
Do Redundant Mutants Affect the Effectiveness and Efficiency of Mutation Analysis?

René Just
Dept. of Applied Information Processing

Ulm University
rene.just@uni-ulm.de

Gregory M. Kapfhammer
Dept. of Computer Science

Allegheny College
gkapfham@allegheny.edu

Franz Schweiggert
Dept. of Applied Information Processing

Ulm University
franz.schweiggert@uni-ulm.de

Abstract—Mutation analysis is an unbiased and powerful
method for assessing input values and test oracles. However, in
comparison to other techniques, such as those that rely on code
coverage, it is a computationally-expensive and time-consuming
method, especially for large software systems. This high cost is
due, in part, to the fact that many mutation operators generate
redundant mutants that may both misrepresent the mutation
score and increase the runtime of the mutation analysis pro-
cess. After showing how the conditional operator replacement
(COR) mutation operator can be defined in a redundant-free
manner, this paper uses four real-world programs, ranging
in size from 3,000 to nearly 40,000 lines of code, to show
the prevalence of redundant mutants. Focusing on the con-
ditional operator replacement (COR) and relational operator
replacement (ROR) mutation operators that create 41% of
all mutants in the chosen programs, the case study reveals
that the removal of redundant mutants reduces the runtime of
mutation analysis by up to 34%. Additional empirical results
show that redundant mutants can lead to a mutation score that
is misleadingly overestimated by as much as 10%. Overall, this
paper convincingly demonstrates that it is possible to improve
the effectiveness and efficiency of a mutation analysis system
by identifying and removing redundant mutants.

I. INTRODUCTION

Mutation analysis is a well-known test adequacy criterion
that can assess input values and test oracles through the
seeding of artificial faults into a system under test. Even
though many prior studies have shown it to be a powerful
metric [5], mutation analysis may be prohibitively time
consuming and computationally expensive in comparison to
other methods, such as those that employ coverage criteria.

Previous studies revealed that a subset of all applicable
mutation operators is sufficient to achieve a meaningful
result [14], [16]. Regarding the operators to be atomic, these
studies focused on reducing the number of mutation opera-
tors without incurring a major loss in the accuracy of the mu-
tation score. This paper considers these operators at a fine-
grained level and shows that their original definition implies
redundancy in the resulting set of mutants. Additionally, the
paper demonstrates, by means of a case study, how prevalent
those redundancies are in real-world applications and how
the inclusion of redundant mutants leads to an inaccurate
mutation score, thus making this metric less meaningful. In
addition to focusing on effectiveness, the paper empirically
demonstrates how reducing the set of mutants decreases the

runtime of the mutation analysis process. In consideration of
the question raised about the effect of redundant mutants on
efficiency and effectiveness of mutation analysis, this paper
makes the following contributions:

• A demonstration that the COR operator for replacing
conditional binary operators with all valid alternatives
should only apply a subset of replacements to avoid the
creation of redundant or trivial mutants.

• A determination of the actual number of mutants gen-
erated by applying the COR and ROR operators. Using
a well-known subset of mutation operators, the case
study computes the ratio of the number of COR and
ROR mutants to the size of the entire set of mutants.

• A case study that investigates how redundant mutants
affect the effectiveness and efficiency of mutation anal-
ysis for four real-world programs that range in size
from 3,000 to nearly 40,000 lines of code.

Since the contribution of this paper concerns the effective-
ness and efficiency of mutation analysis, Section II discusses
the basics of this technique and examines the definitions
of the mutation operators. Next, Section III furnishes a
more detailed view of the mutation operators and proposes
a sufficient and minimal set of replacements for the COR
operator. Section IV describes the case study, reports on
the empirical results, and addresses the potential threats
to validity. Section V describes related work and finally,
Section VI concludes the paper and outlines future work.

II. BACKGROUND ON MUTATION ANALYSIS

Originally introduced by Budd and DeMillo [1], [2],
mutation analysis is a fault-based technique for assessing the
quality of input values or testing strategies. After methodi-
cally seeding faults into an application, a mutation analysis
technique runs the test suite to assess its ability to find
the injected faults. In contrast to the traditional method of
error seeding (cf. [11]), the mutation analyzer systemati-
cally injects the faults, thus ensuring that the process is
reproducible and unbiased. The application of a mutation
operator produces faulty versions of the program under test,
referred to as mutants. That is, a mutation operator is a
formal description of a program transformation that produces
one or more mutated versions of the program.

Table I
SUFFICIENT REPLACEMENTS FOR THE LOGICAL CONNECTOR AND

Literals Original clause Sufficient mutations Subsumed mutations Subsumed operator UOI

a b a && b false lhs rhs a==b a ‖ b a!=b true !(a && b) !a && b a && !b

0 0 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 0 1 0 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 1 1 0 1
1 1 1 0 1 1 1 1 0 1 0 0 0

Table II
SUFFICIENT REPLACEMENTS FOR THE LOGICAL CONNECTOR OR.

Literals Original clause Sufficient mutations Subsumed mutations Subsumed operator UOI

a b a ‖ b a != b rhs lhs true a && b a==b false !(a ‖ b) !a ‖ b a ‖ !b

0 0 0 0 0 0 1 0 1 0 1 1 1
0 1 1 1 1 0 1 0 0 0 0 1 0
1 0 1 1 0 1 1 0 0 0 0 0 1
1 1 1 0 1 1 1 1 1 0 0 1 1

A wide variety of mutation operators have been proposed
for different purposes and programming languages (cf. [5],
[9], [10]). However, applying all mutation operators results
in a substantial number of mutants, especially for large
software systems, and thus executing and analyzing all of the
mutants can be very expensive. Responding to this challenge,
Offutt et al. studied the effectiveness of a subset of mutation
operators, revealing that this smaller group of sufficient
mutation operators could be applied without a substantial
loss of information [14]. While the actual subset that can be
employed depends on the programming language, this paper
considers the following set of mutation operators which are
supported by an established mutation testing tool [6], [7]
and commonly used in previous experiments [15], [16]:

• Operator Replacement Binary (ORB): Replace all oc-
currences of binary operators with all valid alternatives.
Since ORB replaces arithmetic, logical, shift, condi-
tional, and relational operators, the ROR and COR
operators studied by this paper belong to this class.

• Operator Replacement Unary (ORU): Replace all oc-
currences of unary operators with all valid alternatives.

• Literal Value Replacement (LVR): Replace all literal
values with a positive value, a negative value, and zero.
Additionally, all variables with a reference type are
replaced by a reference to null.

III. A DETAILED VIEW OF THE COR OPERATOR

Previous studies on the reduction of mutation operators
(e.g., [14], [16]) did not take their definition into account
and considered the operators to be atomic. This means that,
for instance, a replacement operator was either applied with
all valid replacements or it was excluded. More recently,
Kaminski et al. investigated the relational operator replace-
ment and showed that only four replacements are necessary

to subsume all the others [8]. In this section, we focus on the
conditional operator replacement for the logical connectors
&& and ||. Generally, valid mutations for a conditional
expression such as a <op> b, where <op> denotes one
of the logical connectors, include the following:

• a && b: Apply the logical connector AND
• a || b: Apply the logical connector OR
• a == b: Apply the relational operator a == b
• a != b: Apply the relational operator a != b
• lhs: Return the value of the left hand side operand
• rhs: Return the value of the right hand side operand
• true: Always evaluate to the boolean value true
• false: Always evaluate to the boolean value false
To ensure that mutation analysis is effective, it is often

important for a mutant to have only a small impact on the
output, thus making it hard to detect. Trivial and redundant
mutants also should be avoided to reduce the runtime of
the mutation analysis process and to not misrepresent the
mutation score. This paper refers to mutants that result in a
wrong output for all possible input values as trivial mutants.

With respect to the COR operator and the given valid
replacements, Tables I and II show all possible mutations for
the logical connectors and their effect on the boolean result
of the corresponding conditional expression. Besides the
original expression, the tables show four sufficient mutations
for each expression where all mutants have the least possible
impact (i.e., they only change the result of one out of
four combinations). The actual changes are highlighted with
circles to show that the mutations are disjoint and that their
union forms a sufficient set. Since the depicted sufficient
mutations collectively cover all possible combinations, they
subsume all of the other mutations that have a higher impact,
as highlighted by the rectangles. For example, the lhs op-
erator produces the wrong output for a certain combination

Table III
INVESTIGATED CASE STUDY APPLICATIONS

Files LOC* Relational
Operators

Conditional
Operators Tests

com-math 408 39,991 3,577 428 2,169
com-lang 99 19,495 2,739 695 2,039
com-io 100 7,908 687 139 309
num4j 73 3,647 326 124 218
*Lines of code as reported by sloccount (non-comment and non-blank lines)

of the literals a and b and all subsumed mutations produce
the same wrong output for this combination. Thus, as shown
in Tables I and II, a test that can detect the lhs mutant also
detects all of the other subsumed mutations.

Moreover, the sufficient set of mutations not only sub-
sumes all of the other mutations but also another entire mu-
tation operator, namely the unary operator insertion (UOI).
The impact of the UOI operator is again highlighted with
rectangles in Tables I and II. It has to be pointed out that the
depicted subsumption hierarchy only holds for conditional
expressions with one logical connector. This paper does not
further investigate composed conditional expressions and
leaves this matter open for future research.

IV. CASE STUDY

To examine both the frequency and the effect of redun-
dant mutants, we conducted a case study with four open-
source applications. Table III summarizes the investigated
applications, showing how they differ in size, complexity,
and operation purpose. Since the study focuses on the
reduction of mutants associated with applying the COR and
ROR mutation operators, the table also gives the counts for
the occurrences of relational and conditional operators, in
addition to the number of files, tests, and lines of code.
The number of tests depicted in the last column of Table III
represents the quantity of existing unit tests that are provided
and released with the corresponding application.

Throughout the case study, we employed MAJOR, a
compiler-integrated tool for the mutation analysis of Java
programs, to mutate the applications and to perform the
mutation analysis process [6], [7]. MAJOR also provides all
relevant data about the number of generated mutants and the
necessary runtime for the mutation analysis, thus enabling
an investigation of the following four research questions:
Q1: What is the ratio of the number of mutants generated by

the COR and ROR operators to the number of mutants
generated by applying all operators?

Q2: Are conditional expressions with only one logical con-
nector, like those studied in Section III, predominant in
real-world applications?

Q3: What is the actual savings in the runtime of mutation
analysis due to the use of the reduced set of mutants?

Q4: How does the elimination of redundant mutants affect
the overall mutation score?

0 20,000 40,000 60,000 80,000

numerics4j

commons-io

commons-lang

commons-math

19.5%

14.5%

22.3%

5.1%

19.3%

26.9%

35.5%

24.3%

Number of generated mutants

All mutants
ROR mutants
COR mutants

Figure 1. Ratio of the number of COR and ROR mutants to the number
of all generated mutants for the investigated case study applications

A. The frequency of the COR and ROR mutants

To answer the first research question, we determined the
number of mutants generated by applying the COR and ROR
operators with all of the possible replacements defined by
Namin et al. [16]. We also ascertained the number of mutants
that can be generated by using all of the operators, including
COR and ROR. Figure 1 visualizes the ratio of mutants
associated with the COR and ROR operators (the dark gray
and black bars) to the number of mutants generated by
applying all mutation operators (light gray bar). Ranging
from 29.4% for commons-math to 57.8% for commons-
lang, the number of mutants generated by only applying the
COR and ROR operators is a substantial portion of all the
induced mutants. With a mean value of 41.8%, this range
suggests that there is a notable potential for effectiveness
and efficiency improvements through the removal of the
redundant mutants associated with COR and ROR.

B. The number of connectors in conditional expressions

As stated in Section III, we can only guarantee that the
reduced set of mutants generated by the COR operator is
sufficient and redundancy-free for conditional expressions
with one logical connector. Therefore, in order to ascertain
the benefit of this partial solution, we calculated the ratio of
conditional expressions with one connector to the remaining
number of conditional expressions. For each case study ap-
plication, Figure 2 illustrates the distribution of the number
of logical connections in the conditional expressions. With
a mean value of 78.2% across the four studied programs
and a range between 63.3% for numerics4j and 85.9% for
commons-math, the number of conditional expressions with
only one connector is predominant for all applications. Thus,
for almost 80% of the conditional expressions, the suggested
subset of replacements, as given in Section III, provides a
sufficient and redundancy-free set of mutants.

0 100 200 300 400 500

numerics4j

commons-io

commons-lang

commons-math

63.3%

82.9%

80.7%

85.9%

Number of conditional expressions

1 connector
2 connectors

≥3 connectors

Figure 2. Distribution of the number of logical connectors in conditional
expressions for the investigated case study applications

C. Decreasing the runtime of the mutation analysis

The smaller subset of replacements for the COR and ROR
operators means that fewer mutants have to be generated
and hence the number of necessary executions during the
mutation analysis process is also reduced. With regard to the
reduction of mutants and the decrease in runtime, we distin-
guish between generated and covered mutants, with covered
meaning that a mutant is reached and executed but not nec-
essarily killed. Hence, the mutation coverage is a necessary
but not sufficient condition to kill a mutant. Tables IV and V
show the decrease in the number of generated and covered
mutants according to the following sets of mutations:

SM1: All mutants generated by all mutation operators
with all valid replacements

SM2: Reduced set of mutants generated by all available
mutation operators but with sufficient replacements
for the COR and ROR operators

SM3: All mutants generated by using the COR and ROR
mutation operators with all valid replacements

SM4: Reduced set of mutants generated by only employ-
ing the COR and ROR mutation operators but with
sufficient replacements

The reduction of the mutations associated with the COR
and ROR operators significantly affects the number of gen-
erated mutants, even when applying all mutation operators.
Depending on the ratio of the COR and ROR mutants to
all other mutants, the decrease ranges between 16.9% for
commons-math and 32.3% for commons-lang, as shown in
Table IV. With respect to the covered mutants, the decrease
depicted in Table V is comparable to the decrease of the
generated mutants for all applications except commons-io.
The is due to the low mutation coverage rate of only 51.7%
achieved by the test suite for this application. Many COR
and ROR mutants are not covered and hence, a reduction of
these mutants does not affect the number of covered mutants.

In addition to calculating the reduction in the number
of generated and covered mutants, we also determined the
actual improvement in the runtime while exploiting two
runtime optimizations. On the one hand, we did not analyze

Table IV
DECREASE IN THE NUMBER OF GENERATED MUTANTS

SM1 SM2 SM3 SM4

com-math 80,372 66,787 (-16.9%) 23,620 10,035 (-57.5%)
com-lang 31,130 21,074 (-32.3%) 17,998 7,942 (-55.9%)
com-io 9,547 7,319 (-23.3%) 3,954 1,726 (-56.3%)
num4j 6,835 5,437 (-20.5%) 2,647 1,249 (-52.8%)

Table V
DECREASE IN THE NUMBER OF COVERED MUTANTS

SM1 SM2 SM3 SM4

com-math 72,203 59,195 (-18.0%) 22,620 9,806 (-56.6%)
com-lang 29,069 19,112 (-34.3%) 17,810 7,890 (-55.7%)
com-io 4,935 4,168 (-15.5%) 1,349 558 (-58.6%)
num4j 6,547 5,149 (-21.4%) 2,642 1,225 (-53.6%)

Table VI
DECREASE IN THE RUNTIME OF THE MUTATION ANALYSIS

SM1 SM2 SM3 SM4

com-math 300.77 271.10 (-09.9%) 51.52 39.27 (-23.8%)
com-lang 28.25 18.70 (-33.8%) 12.63 6.82 (-46.0%)
com-io 6.95 4.58 (-34.1%) 4.15 2.00 (-51.8%)
num4j 2.85 2.08 (-26.9%) 0.92 0.50 (-45.5%)
*Runtimes reported in minutes

mutants that are not covered since they cannot be killed and
on the other hand we did not further investigate a mutant
once it has been killed. Table VI furnishes the execution time
of a mutation analysis process that uses MAJOR to calculate
a mutation score for each application’s test suite [6], [7].
With a reduction in runtime of up to 34% for commons-
io and a minimum of 10% for commons-math, the results
demonstrate a significant speed-up for all of the applications.
Yet, the observed improvement in the runtime depends on
the distribution of the COR and ROR within the application
and the runtimes of the tests that do not cover these mutants.
For instance, the test suite for commons-math contains a few
long-running tests that cover many mutants but only a few
COR and ROR mutations. Since the runtime of these tests is
a considerable proportion of the total runtime, the removal of
the redundant COR and ROR mutants only yields a modest
decrease in the cost of mutation analysis for this application.

D. Increasing the precision of the mutation score

Since redundant mutants lead to an imprecision in the
mutation score, we used both the complete and reduced
set of mutants to calculate this value for all of the case
study applications. Table VII gives the mutation score for
the generated mutants, with SM1, SM2, SM3, and SM4

again denoting the mutation sets described in Section IV-C.
Considering only the COR and ROR mutants that are
represented by the sets SM3 and SM4, the mutation score
decreases by 19% on average. When applying all of the

Table VII
DIVERGENCE OF THE MUTATION SCORE WITH REGARD TO THE

GENERATED MUTANTS

SM1 SM2 SM3 SM4

com-math 0.77 0.73 (- 4.5%) 0.75 0.59 (-20.5%)
com-lang 0.76 0.67 (-10.7%) 0.81 0.67 (-17.4%)
com-io 0.41 0.44 (8.3%) 0.26 0.21 (-19.2%)
num4j 0.69 0.65 (- 5.9%) 0.74 0.59 (-19.3%)

Table VIII
DIVERGENCE OF THE MUTATION SCORE WITH REGARD TO THE

COVERED MUTANTS

SM1 SM2 SM3 SM4

com-math 0.85 0.83 (-3.2%) 0.78 0.61 (-22.1%)
com-lang 0.81 0.74 (-8.1%) 0.82 0.67 (-17.7%)
com-io 0.79 0.78 (-1.7%) 0.75 0.64 (-14.7%)
num4j 0.72 0.68 (-4.9%) 0.74 0.61 (-17.8%)

mutation operators, the reduced sets still result in a decrease
of up to 10% for programs like commons-lang. Unless
the redundant mutants are removed, the mutation score is
overestimated for all applications except commons-io. For
this application, the corresponding test suite only covers 33%
of the generated COR and ROR mutants. Thus, removing the
redundant mutants affects the number of generated mutants
more significantly than the number of killed mutants, leading
to an 8% increase in the mutation score.

Table VIII shows how the removal of the redundant
mutants affects the mutation score that is calculated for the
number of covered mutants. Once again, there is a notable
18% average decrease in the mutation score when applying
only the COR and ROR mutations. For the sets SM1

and SM2, the mutation score decreases between 2% for
commons-io and 8% for commons-lang. Overall, redundant
mutants tend to overestimate the mutation score for the case
study applications, thus causing this metric to become a less
accurate assessment of test suite quality.

E. Threats to Validity

It is important to examine the threats to the validity of this
paper’s case study. The chosen subset of sufficient mutation
operators could be a threat to internal validity. Different or
additional operators may affect both the number and the ratio
of the generated mutants. However, the operators employed
in the study are frequently used in the literature and therefore
provide comparable results [15], [16].

The representativeness of the selected case study applica-
tions might be a potential threat to external validity. Thus,
the presented results may be different for other programs.
The analyzed applications, nevertheless, vary in terms of
their size, complexity, and operation purpose. Therefore, we
judge that the reported results are meaningful.

Defects in the compiler-integrated mutation tool could be
a threat to construct validity. We controlled this threat by

employing several small example programs and manually
analyzing the resulting mutants and data. Moreover, we used
the same tool to conduct two previous empirical studies (i.e.,
[6], [7]) without encountering any problems. Overall, we
judge that the implementation worked correctly.

V. RELATED WORK

As previously mentioned in Section II, employing all
available mutation operators with all valid replacements
results in a significant number of mutants, especially for
large software systems. In addition to the runtime overhead
caused by the many mutants, there are also redundant and
trivial mutants that may misrepresent the mutation score.

In an attempt to reduce the computational costs, different
selective and sampling-based approaches have been pro-
posed in the literature (e.g., [5], [15]). These techniques re-
duce the quantity of mutants either by decreasing the number
of operators or by selecting only a subset of the generated
mutants. Yet, all of these approaches view the mutation
operators, in their originally defined form, as atomic. Hence,
there are still redundancies within the selected subset that
affect both the runtime and the mutation score.

Kaminski et al. investigated the ROR operator in detail
and showed that a subset of four out of eight valid replace-
ments was sufficient for this operator [8]. They additionally
claimed, without further investigation or evidence, that this
reduction would improve efficiency. Similar to our focus on
conditional and relational operators, Tai developed a theory
for testing the predicates in conditional logic statements [17].

In connection with our method that avoids redundant
mutants and minimizes the impact of mutations, higher order
mutation aims at generating fewer, but more subtle mutants
[4]. Mutants created by means of the combination of two
first order mutants are referred to as second order mutants.
Accordingly, higher order mutation generally denotes the
combination of two or more first order mutants. Jia and
Harman showed the existence of higher order mutants that
are harder to kill than the first order mutants out of which
they were created. Nevertheless, the computational costs for
higher order mutation are significantly greater because of the
combinatorial explosion. However, search-based techniques
seem to be an appropriate solution to this problem [4].

Apart from redundant mutants, the equivalent mutant
problem is another crucial consideration in mutation test-
ing. Equivalent mutants are harmful to the runtime of the
mutation analysis process since they cannot be detected
by any test. Additionally, employing a set of mutants that
includes equivalent mutants results in an underestimation
of the mutation score. Approaches that try to alleviate the
equivalent mutant problem can be divided into two cate-
gories. On the one hand, there are techniques focusing on the
detection of equivalent mutants (e.g., [3], [13]). On the other
hand, approaches exist for reducing the number of equivalent
mutants during the mutant generation process (e.g., [12]).

VI. CONCLUSION AND FUTURE WORK

This paper investigates how redundant mutants affect the
effectiveness and efficiency of mutation analysis. Focusing
on two well-known mutation operators, namely the rela-
tional operator replacement (ROR) and conditional operator
replacement (COR), the paper makes several contributions.
First, it develops a subsumption hierarchy and reveals a
sufficient set of replacements for the COR operator. Using
this sufficient set, in conjunction with the ROR operator’s
reduced set that was shown to be sufficient by Kaminski et
al. [8], this paper reports on a case study that empirically
demonstrates how redundant mutants affect both the muta-
tion score and the runtime of the mutation analysis process.

After determining how prevalent relational and condi-
tional operators are in real-world applications, this paper
examines the ratio of the number of mutants generated by
the COR and ROR mutation operators to the total number
of mutants. With a mean value of 41.8% and a range from
29.4% to 57.8%, the high percentage of COR and ROR
mutants clearly reveals the potential for improving mutation
analysis by focusing on the mutants produced by these
operators. The experiments also show that employing the
sufficient replacements for the COR and ROR operators
leads to a commensurate drop in the number of generated
mutants that ranges from 16.9 to 32.3%.

Moreover, reducing the number of generated mutants
leads to a decrease in the runtime of the mutation analysis
process that is between 9.9 and 34.1%. Finally, the empirical
results show that, depending on the application, improving
the precision of the mutation score can lead to a value that
is greater than or less than the score resulting from the use
of the original set of mutants. For three applications, using
the reduced set of mutants yields a reduction in the mutation
score ranging from 4.5 and 10.7%. Yet, when one program’s
test suite only covers a small percentage of the generated
mutants, the mutation score increases by 8.3%.

Because of the promising results of the case study re-
ported on in this paper, we plan as part of our future work
to determine a sufficient set of replacements for other muta-
tion operators, such as the arithmetic operator replacement
(AOR). Leveraging the theory of Tai [17], the generalization
of the results for the COR operator and the establishment
of a subsumption hierarchy for conditional expressions with
more than one logical connector are other areas for future
research. After completing these steps, we intend to replicate
the empirical study in this paper to better understand how
redundant mutants affect the effectiveness and efficiency of
mutation analysis. Our future empirical studies will also
incorporate additional case study applications, thus better
ensuring that our results are generalizable. Finally, to address
the equivalent mutant problem, another critical concern in
mutation testing, we will investigate whether mutants with
a minimized impact, like the ones described in this paper,
are more or less likely to be equivalent.

REFERENCES

[1] T. A. Budd. Mutation Analysis of Program Test Data. PhD
thesis, Yale University, 1980.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection: Help for the practicing programmer. IEEE
Computer, 11(4):34–41, 1978.

[3] R. Hierons, M. Harman, and S. Danicic. Using program slic-
ing to assist in the detection of equivalent mutants. Software
Testing, Verification and Reliability, 9:233–262, 1999.

[4] Y. Jia and M. Harman. Higher order mutation testing.
Information and Software Technology, 51:1379–1393, 2009.

[5] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions on
Software Engineering, 37(5):649–678, 2011.

[6] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using
conditional mutation to increase the efficiency of mutation
analysis. In Proceedings of the 6th Workshop on Automation
of Software Test, AST ’11, pages 50–56, 2011.

[7] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR:
An efficient and extensible tool for mutation analysis in a Java
compiler. In Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11,
pages 612–615, 2011.

[8] G. Kaminski, P. Ammann, and J. Offutt. Better predicate
testing. In Proceedings of the 6th Workshop on Automation
of Software Test, AST ’11, pages 57–63, 2011.

[9] K. N. King and A. J. Offutt. A Fortran language system
for mutation-based software testing. Software: Practice and
Experience, 21(7):685–718, 1991.

[10] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: A mutation
system for Java. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages 827–
830, 2006.

[11] H. Mills. On the Statistical Validation of Computer Programs.
Technical report, IBM FSD Report, 1970.

[12] A. J. Offutt. Investigations of the software testing coupling
effect. ACM Transactions on Software Engineering Method-
ology, 1(1):5–20, 1992.

[13] A. J. Offutt and W. M. Craft. Using compiler optimization
techniques to detect equivalent mutants. The Journal of
Software Testing, Verification, and Reliability, 4:131–154,
1994.

[14] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient mutant
operators. ACM Transactions on Software Engineering and
Methodology, 5(2):99–118, 1996.

[15] J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal. In Proceedings of Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries, pages
45–55, 2000.

[16] A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Suffi-
cient mutation operators for measuring test effectiveness. In
Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 351–360, 2008.

[17] K.-C. Tai. Theory of fault-based predicate testing for com-
puter programs. IEEE Transactions on Software Engineering,
22(8), 1996.

