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Abstract

This paper reports on experience with the en-
gineering and empirical evaluation of data manage-
ment software that stores objects in collections like
the ArrayList or Vector. While many programs may
retrieve an object from a collection by iteratively eval-
uating each object according to a set of condition(s),
this imperative retrieval process becomes more chal-
lenging and error-prone as it applies many complex
criteria to find the matching objects in multiple collec-
tions. Query languages for unstructured Java virtual
machine (JVM) heaps present an alternative to the
imperative approach for finding the matching objects.
Using a benchmarking framework that measures the
performance of declarative approaches to identifying
certain objects in the JVM heap, this paper empiri-
cally evaluates two query languages, JQL and JoSQL.
Both the experiences and the experimental results re-
veal trade-offs in the performance and overall viability
of the query languages and the imperative approaches.

1 Introduction

Programming in an object-oriented language
(e.g., Java or C++) often involves the instantiation
of objects and the invocation of methods in order to
perform a desired operation. A Java program normally
uses a collection, such as an ArrayList or a Vector,
in order to manage the many objects that it allocates
to the Java virtual machine (JVM) heap while execut-
ing. One approach to finding an object in a collection
involves the iterative evaluation of each object accord-
ing to an established set of condition(s). For instance,
a Java-based Web browser may use a Vector of Site
objects that stores data about all of the Web sites
that a user is currently browsing. When a user dis-
connects from a specific Web site, the browser must
traverse the Vector of Sites and remove the object
associated with the recently closed Web page. This
imperative approach to object retrieval is straightfor-
ward and easy to implement when the Java application
uses a small number of collections and objects. Yet, as
the number of collections and objects increases, imper-

ative programming may lead to applications that are
complicated, error-prone, and hard to maintain [11].

Instead of implementing the operations that are
needed to identify the matching objects, the declar-

ative approach to data manipulation specifies the
requirements that the desired objects must meet.
Declarative techniques, such as those found in a re-
lational database management system (RDBMS), are
commonly coupled with modules that perform query
execution and optimization [9]. The query executor
uses a specification for the required objects in order to
automatically construct a plan for finding the desired
data points. Since the RDBMS provides direct sup-
port only for relational data, it cannot transparently
manage queries concerning the objects that a program
stores in the heap of a JVM.

However, the Structured Query Language for
Java Objects (JoSQL) [1] and Java Query Language
(JQL) [10] furnish a declarative alternative to find-
ing objects in heap-resident Java collections. JoSQL
uses Java’s reflection mechanism [2] during the exe-
cution of queries that are specified in a variant of the
traditional structured query language [1]. JQL utilizes
aspect-oriented programming (AOP) through AspectJ
[6] and a unique querying syntax in order to support
object queries. Even though there is a wealth of infor-
mation concerning the efficiency of declarative query-
ing in relational databases (e.g., [4, 8]), there is a rel-
ative dearth of performance data for object-oriented
programs that query unstructured heaps. In order to
close this knowledge gap, this paper presents a bench-
marking framework that evaluates the performance of
declarative approaches to querying JVM heaps. Lever-
aging our experience with this framework, we identify
fundamental trade-offs in the response time character-
istics of JQL, JoSQL, and several imperative methods.
In summary, the main contributions of this paper are:

1. A benchmarking framework that measures the
performance of declarative approaches to finding
data in unstructured heaps (Sections 2 and 3).

2. Empirical evaluation of several factors (Section 4):

(a) The performance trade-offs associated with



an aspect-oriented (JQL) and a reflection-
based (JoSQL) approach to object querying.

(b) The impact that the type of object and col-
lection have on the performance of both the
declarative and imperative query executors.

(c) The viability of JQL and JoSQL when com-
pared to several imperative methods.

2 Query Language Overview

In order to ensure that the paper is self-contained,
this section provides a brief overview of JQL and
JoSQL. For more details about these Java query lan-
guages, please refer to [1, 10]. Figure 1 describes the
process associated with using JQL to perform a query
in a Java program. Currently, JQL supports queries
concerning objects that reside in any type of container
that extends the Java class java.util.Collection.
JQL also handles queries for objects that are instances
of both the Java standard library and user-defined
classes. JQL’s caching mechanism stores matching ob-
jects and subsequently monitors the changes to these
objects in order to efficiently process repeated queries.
Since JoSQL does not furnish caching functionality, we
reserve the evaluation of this JQL feature for future
work. Finally, JQL queries can span multiple collec-
tions that vary according to their type and contents.

As depicted in Figure 1, a programmer must ini-
tially implement a Java program that contains spe-
cialized JQL code bodies (i.e., the JQL file). The
JQL compiler transforms the JQL code, as shown in
code segment one, into Java source code that conforms
to the syntax and semantics of the current Java lan-
guage. Using a standard Java compiler, the program-
mer transforms the JQL-enhanced source code into
normal Java source code. Compiling and executing
these bytecodes with a JVM causes the program to
pass the JQL queries to a query executor that auto-
matically develops and runs a query plan designed to
return the matching objects. JQL programs contain
AspectJ advice that tracks the allocation of objects to
the JVM heap. The JQL runtime system uses a lin-
ear processing tree [7] during query evaluation and it
supports both the nested-loop and hash joins [10].

1 Find all Integers with a value greater than ten (JQL):

List queryResults = selectAll(Integer i: list

| i > 10 );

Figure 2 demonstrates the procedure for exe-
cuting a JoSQL query in a Java program. Unlike
JQL, JoSQL limits queries to objects that exist in
a single collection. Similar to JQL, JoSQL handles
queries for any Java object that resides in a con-
tainer that extends java.util.List, a sub-interface
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Figure 1: Query Execution with JQL.

of java.util.Collection. JoSQL also provides sup-
port for many standard SQL features such as aggre-
gation, ordering clauses, and nested queries [1]. Yet,
JoSQL does not offer complete SQL functionality since
it lacks the join and union operators.

As shown in Figure 2 and code segment two,
a Java program using JoSQL expresses a query as
a String containing SELECT statements. JoSQL’s re-
liance upon Strings eliminates the pre-processing step
that JQL requires. After constructing a new Query,
a JoSQL program uses this object to parse the String
and run the query. Employing Java’s reflection mech-
anism to access the specified fields of each object, an
executemethod scans the objects in the heap-resident
list. Finally, queryResults holds the object(s) that
meet the conditions specified in the query.

2 Find all Integers with a value greater than ten (JoSQL):

String sql= "SELECT *

FROM java.lang.Integer

WHERE intValue > 10";

Query q = new Query();

q.parse(sql);

List queryResults = q.execute(list);

3 Experiment Goals and Design

Benchmarking Framework. As illustrated in
Figure 3, the execution of a benchmark starts with
the input of a configuration to the Random Collection
Generator (RCG) and Benchmark Initializer (BI). The
user-defined configuration data includes details about
the type of object, collection, and benchmark. The
RCG uses java.util.Random to construct Strings, In-
tegers, Graphs, and other abstract data types. For
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Figure 2: Query Execution with JoSQL.

instance, RCG successively selects and concatenates
single characters to a String until it reaches the de-
sired size. Following the design in [5], RCG can also
build an undirected Graph object G = 〈V,E〉 such
that each vi ∈ V is randomly connected to between
one and three unique vertices. Each graph G contains
two collections that store the vertices and edges while
a vertex includes a collection for its incident edges.
RCG randomly populates an ArrayList, Vector, or
LinkedList since each of these collection types ex-
tends java.util.List and is thus compatible with
both JQL and JoSQL. Finally, the BI configures a
benchmark object so that the Benchmark Executor
(BE) will run the experiment, collect and store the
chosen evaluation metrics (e.g., response time), and
statistically analyze the resulting data sets.

For each of the five benchmarks in Table 1, the
collection size parameter stands for the number of
unique objects that the framework stores in the col-
lection. The Query benchmark selects either the In-
tegers or Strings in the list that respectively match a
specified Integer or contain a chosen character. For
this benchmark, the object size corresponds to either
the maximum value of the Integers or the total num-
ber of characters within each String. Figures 5 and 6
summarize the results from running Query. The Join
benchmark joins two input lists containing randomly
generated Integers and Strings in order to identify the
Integers whose values match the length of the Strings.
The object size for this benchmark represents the max-
imum size of both the Integer value and String length.
We also hand coded an implementation of the Join
benchmark, called HC-HJ, that uses a hash join to find
the matching Integers and Strings. Figure 7 furnishes
the outcomes from executing Join.

The Sub-Query benchmark searches a collection
of undirected graphs for vertices that store a specified
String. In this context, object size represents both the
number of vertices within the graph and the maximum
size of the Strings contained in each vertex. Figure 8
gives the empirical results created by the Sub-Query
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Figure 3: Benchmarking Framework.

benchmark. Finally, we designed the Aggregate and
Ordering benchmarks to evaluate the performance of
the aggregation and order-by operators within the two
query languages. Due to space constraints, this paper
does not include the response time results from these
benchmarks since they did not reveal experimental
trends not already identified by the first three bench-
marks. Similarly, we do not report the results from
executing the Query benchmark with the small and
medium object sizes. Nevertheless, the framework in-
cludes a complete implementation of each benchmark
and we have successfully executed the benchmarks in
every configuration stated in Table 1.

During the implementation of the framework, it
became clear that differences in the syntax and func-
tionality of JQL and JoSQL would make it difficult
to fully compare these methods. For instance, while
JQL includes several join operators, JoSQL does not
furnish similar functionality. In support of a fair em-
pirical comparison, we integrated standard join meth-
ods into JoSQL and enhanced JQL with ordering and
sub-querying functions. We also implemented sev-
eral hand-coded techniques, denoted HC, that use for
loops to iteratively search the collections.

Goals and Metrics. The fact that JQL con-
structs queries at compile-time while JoSQL exclu-
sively operates at run-time suggests that (i) JQL is
faster than JoSQL and (ii) JoSQL is more flexible than
JQL. As such, we designed the experiments to deter-
mine which querying technique exhibited the lowest
response time as we varied the object size, object type,
collection size, collection type, and various other fac-
tors. Specifically, we wanted to observe how response
time changed as we systematically altered the (i) char-
acteristics of the query, (ii) quantity and size of the
objects, and (iii) type of collection. We also compared
the declarative approaches (i.e., JQL and JoSQL) to
the imperative methods (i.e., HC and HC-HJ).

The performance metric for this study is the
time in milliseconds it takes to perform a sin-
gle query operation on the input collections(s)



Name Operation Object(s) Object Size Collection Size

Small Medium Large Small Medium Large

Query Simple queries for String 10 50 100 5,000 50,000 500,000
objects in one list Integer 100 1,000 10,000 10,000 100,000 1,000,000

Join Query/Join objects String/Integer 10 50 100 500 1,500 3,000
in multiple lists Integer 100 1,000 10,000 500 1,000 1,500

Sub-Query Query object sub- Graph 10 50 100 500 1,000 2,000
collections in one list

Aggregate Perform aggregates Integer 1,000 10,000 100,000 100,000 1,000,000 10,000,000
on one list

Ordering Order objects by Integer 1,000 10,000 100,000 1,000 10,000 100,000
attributes in one list

Table 1: Overview of the Performance Evaluation Benchmarks.

and the framework measures response time with
methods from the standard Java library (e.g.,
System.currentTimeMillis()). We compared the
response time characteristics of (i) JQL 0.3.1 coupled
with ANTLR 2.2.7 and AspectJ 1.5 and (ii) JoSQL
1.8. We conducted all of the experiments on iden-
tical Pentium 4 2.8GHz workstations with 1 GB of
RAM. The execution environment of each workstation
includes the (i) GNU/Linux operating system with a
2.6.22.9-91.fc7 kernel, (ii) Java 1.6.0 compiler, and (iii)
Java 1.6.0 virtual machine in HotSpotTMclient mode.

Data Analysis Techniques. The bar charts in
this paper depict the average time across twenty runs
of the specific benchmark. Within each bar group-
ing, we organized the individual bars to report the
response time measurements in the order JQL, hand-
coded technique, and JoSQL. In Figures 5 through 8,
the error bars at the top of a bar represent the 95%
confidence interval (CI) for the arithmetic mean. The
framework calculates the CIs using the default config-
uration of the Student’s t-test implemented in the R
language for statistical computation [3]. For each re-
sponse time mean in the confidence interval [l, u], we
can be 95% certain that the mean of the response time
values from subsequent experiments will fall between
the lower bound l and the upper bound u. There-
fore, small confidence intervals suggest that our bench-
marking framework generates empirical outcomes in a
repeatable and predictable manner. In fact, many of
the resulting confidence intervals are so tight that they
are not clearly visible in Figures 5 through 8.

As evidenced by Figure 4, this paper also em-
ploys regression tree models to describe the trends in
the data sets. In particular, we use a recursive parti-
tioning algorithm [3] to determine how the explanatory
variables (e.g., query method, collection type, collec-
tion size, and object size) impact the response time
metric. We selected this type of simple hierarchical
model because it furnishes a clear view of the interac-
tions between the explanatory variables. The root of a

regression tree corresponds to the most important ex-
planatory variable for a data set. By following a path
from the root to a leaf node, it is possible to determine
the mean value for the specified subset of the data.

In the split points of the regression trees (e.g.,
“Method:HC,JQL” in the first model of Figure 4), the
word before the colon is a categorical explanatory vari-
able and the word(s) to the right are the descriptors
associated with the left sub-tree. Splits may also par-
tition numerical variables with comparison operators.
Moreover, the right sub-tree always corresponds to the
data values that are not included in the split’s descrip-
tor. For instance, the root of the first tree model indi-
cates that the left sub-tree describes the response time
of HC and JQL while the right sub-tree gives that of
JoSQL. The first tree in Figure 4 also reveals that HC
and JQL have an average response time of 38.65 ms
for the Integer-based Query benchmark.

4 Experimental Results

Query Benchmark. The examination of the
first tree model in Figure 4 and the bar chart in Fig-
ure 5 shows that JQL’s performance is comparable to
HC and as such it is substantially faster than JoSQL.
The tree model also reveals that when the Query
benchmark uses either an ArrayList or a Vector,
JoSQL’s response time is an order of magnitude higher
than the average response time of HC and JQL (i.e.,
38.65 ms versus 309.40 ms). If we replace JQL with
JoSQL in the ArrayList-based Query benchmark,
then calculations with the results in Figures 5 and 6 in-
dicate that, at the largest collection size, the response
time increases by 874.8% and 180.1%, respectively.
Overall, the tree models and the bar charts in Fig-
ures 5 and 6 confirm the same trend: JQL is faster
than JoSQL. We attribute JoSQL’s poor performance
to the fact that it must process query Strings and use
Java’s expensive reflection mechanism [2] to access the
collections during query execution. In contrast, JQL’s
pre-processing step avoids the costly operations that
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Figure 4: Regression Tree Models for the Response Time Metric.

are fundamental to JoSQL. JoSQL’s reliance upon re-
flection also leads to high initialization overheads that
further increase the response times. For instance, run-
ning the Query benchmark with JoSQL on an empty
collection takes an average of 90 ms while JQL incurs
an overhead of less than 1 ms for the same operation.

In the context of the tree model for the Query
Benchmark with Integers, the leaves contained in
JoSQL’s right sub-tree have high values that range
from 408.50 to 86330.00 ms. Therefore, it is ev-
ident that the LinkedList causes JoSQL to incur
very high time overheads (we find a similar trend
in the tree for the String-based Query benchmark).
When JoSQL uses reflection to retrieve the data in
an ArrayList or Vector, it gains access to the ob-
jects after one invocation of a reflective operation. In
contrast, JoSQL must perform reflection on each ver-
tex within the LinkedList in order to retrieve all of
the data objects. Finally, the first two tree models
and Figures 5 and 6 expose the fact that JQL and
HC exhibit higher response times when Query uses
Strings instead of Integers. We attribute this result
to the fact that the String containment check with
contains(CharSequence s) is more expensive than
equality testing for Integers. In comparison to the
Integer-based benchmark, a Query with Strings only
has lower response times because we configured it to
use collections that are half the size of those used in
the Integer version (see Table 1 for more details).

Join Benchmark. As explained in Section 3,
the Join benchmark scans the two input collections
in order to determine which Integers have values that
match the length of the Strings. When a match is
found, this benchmark creates a temporary array of
size two, stores the matching String and Integer in the
array, and places the array in a collection housing the
final results. The first, second, and third tree mod-
els in Figure 4 also demonstrate that, for both HC-HJ
and JQL, Join is more computationally intensive than

Query (i.e., 247.40 ms versus 63.75 ms). As antici-
pated, the Join benchmark’s tree model also confirms
that JoSQL’s response time values are always one or
two orders of magnitude higher than the arithmetic
mean for either HC-HJ or JQL (i.e., 247.40 ms versus
3651.00, 8447.00, or 80720.00 ms).

The bar charts in Figure 7 also reveal that JQL is
normally slower than HC-HJ when the Join benchmark
analyzes the medium and large objects and collections.
We attribute this to the fact that JQL uses AspectJ
advice to (i) track the Strings, Integers, and temporary
arrays allocated by Join and (ii) subsequently traverse
a complex heap graph when executing the join oper-
ator. Consequently, HC-HJ exhibits lower response
times because it avoids the execution of the tracking
advice required by JQL. The results in Figure 7 also
show that the performance of HC-HJ and JQL im-
proves as the object size increases from 10 to 100. This
phenomenon occurs because the number of matching
objects decreases as the maximum Integer value and
String length increases, thus decreasing the number of
temporary arrays allocated by HC-HJ and JQL, and
thereby reducing response time.

Sub-Query Benchmark. The benchmarks also
record the number of objects within the collection that
stores the results from executing the chosen query (we
use the “Matches” explanatory variable to denote the
size of the collection). The last tree model in Figure 4
shows that the number of matching objects is the dom-
inant factor in explaining the response time character-
istics of the Sub-Query benchmark with Graphs. The
number of matching objects best explains the response
time of Sub-Query because we set up the benchmark
to operate with object and collection sizes that are
relatively small when compared to the other bench-
marks. When configured as such, the selectivity of
a query may dominate an application’s performance.
The regression tree model also indicates that HC and
JQL exhibit lower average response times than JoSQL
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Figure 5: Query Benchmark with Integers.
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(e.g., 42.41 versus 254.30 ms for Sub-Query bench-
marks with comparatively few matches).

The bar charts in Figure 8 also expose the fact
that JQL’s response times are often lower than HC’s
when Sub-Query analyzes the small and medium sized
collections of Graph objects. This result suggests that
JQL’s use of AspectJ advice to construct and traverse
the heap graph can be more efficient than the iterative
approach taken by HC. However, we also observe that
JQL’s response times increase as the size of both the
objects and the collection increases (e.g., the “Large”
bar group in the bottom right graph of Figure 8 shows
the respective time overhead of JQL and HC at 216.25
and 194.10 ms). Once again, this phenomenon can be
traced to the fact that JQL must use advice to track
all of the objects and collections that the benchmark
allocates to the JVM’s heap. This trend is particularly
noticeable for Sub-Query because each Graph object
uses two collections to respectively store vertices and
edges, with each vertex containing an additional col-
lection for all of its incident edges.

5 Conclusions and Future Work

While tangentially connected to prior empirical
studies of query execution in databases (e.g., [4, 8]),
this article primarily relates to Willis et. al’s descrip-
tion and evaluation of JQL [10]. Yet, to the best of
our knowledge, this paper furnishes the first empiri-
cal comparison of two representative methods for find-
ing data in unstructured JVM heaps (i.e., JQL and
JoSQL). In conclusion, this paper presents a frame-
work that uses simple benchmarks and automatically
constructed tree models to yield insight into the re-
sponse time characteristics of JQL and JoSQL. For
instance, Figures 4 through 8 clearly reveal that JQL
outperforms JoSQL by often exhibiting response time
characteristics that are similar to the hand-coded im-
plementations. The experiences in this paper also
demonstrate the feasibility of using our benchmarks
to make intelligent choices about query methods and
subsequently avoid degrading the performance and/or
correctness of a program’s data analysis routines.

In future work, we intend to integrate new bench-
marks and object types, while also considering differ-
ent sizes of objects and collections. After further en-
hancing the benchmarks, we will also study the impact
that caching can have on the performance of different
methods for finding data in Java collections. More-
over, we will leverage more advanced statistical meth-
ods (e.g., analysis of variance, multiple comparison
tests, and random forest generators) in order to fur-
ther understand the trade-offs in response time. Ul-
timately, the combination of this paper and future
work will yield a framework that enables developers
to handle the software and data engineering challenges
associated with using declarative and imperative ap-
proaches to finding data in unstructured heaps.
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Figure 7: Join Benchmark with Integers and Strings.
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Figure 8: Sub-Query Benchmark with Graphs that Contain Strings.


