
An Examination of the Run-time Performance of
GUI Creation Frameworks

Christopher J. Howell, Gregory M. Kapfhammer, Robert S. Roos
Department of Computer Science

Allegheny College
Meadville, PA 16335

{howellc,gkapfham,rroos}@allegheny.edu

ABSTRACT
The graphical user interface (GUI) is an important com-
ponent of many software systems. Past surveys indicate
that the development of a GUI is a significant undertaking
and that the GUI’s source code often comprises a substan-
tial portion of the program’s overall source base. Graph-
ical user interface creation frameworks for popular object-
oriented programming languages enable the rapid construc-
tion of simple and complex GUIs. In this paper, we examine
the run-time performance of two GUI creation frameworks,
Swing and Thinlet, that are tailored for the Java program-
ming language. Using a simple model of a Java GUI, we
formally define the difficulty of a GUI manipulation event.
After implementing a case study application, we conducted
experiments to measure the event handling latency for GUI
manipulation events of varying difficulties. During our in-
vestigation of the run-time performance of the Swing and
Thinlet GUI creation frameworks, we also measured the
CPU and memory consumption of our candidate applica-
tion during the selected GUI manipulation events. Our ex-
perimental results indicate that Thinlet often outperformed
Swing in terms of both event handling latency and memory
consumption. However, Swing appears to be better suited,
in terms of event handling latency and CPU consumption,
for the construction of GUIs that require manipulations of
high difficulty levels.

1. INTRODUCTION
The performance of interactive systems is a significant

part of a user’s perception of overall system performance.
For an application to be successful, a user must possess the
ability to interact with the application easily. A graphical
user interface (GUI) is one mechanism to allow easy inter-
action between the user and the application. While past
estimates indicated that an average of 48% of an applica-
tion’s source code was devoted to the interface [18], current
reports reveal that the GUI represents 60% of the overall

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd International Conference on the Principles and Practice of Program-
ming in Java 2003 Kilkenny City, Ireland
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

source of a program [13]. Graphical user interface toolkits
(or, alternatively, GUI creation frameworks) facilitate the
construction of interfaces by providing a set of graphical
widgets and a mechanism for combining these widgets into
a complete GUI [17, 18].

GUI creation frameworks do not solve all of the prob-
lems that are associated with the construction of software
systems that have interfaces. Indeed, additional techniques
have been proposed and implemented to address the issues
of GUI correctness [14, 16], GUI usability and widget layout
[19], interactive system performance [5], and the analysis of
the correctness and performance of the underlying applica-
tion [8, 21]. Even though the performance of interactive
systems is clearly important [7, 20], relatively little research
has specifically focused on the measurement and comparison
of the run-time performance of GUI creation frameworks.
Since a GUI is an important component of most software
applications and a GUI toolkit is often used to construct the
interface, it is clearly important to develop an understanding
of the performance of current GUI creation frameworks.

According to Horgan et al. [9], the analysis of Java pro-
grams can be broken into at least four levels, namely (1) stat-
ically, at the source code level; (2) statically, at the bytecode
level; (3) dynamically, at the bytecode level; and (4) dynam-
ically, on a specific virtual machine and architecture. In this
paper, we focus on the fourth level by analyzing the perfor-
mance of GUI creation frameworks on a specific Java Virtual
Machine (JVM) and selected computer architectures. Using
a case-study application, we experiment with two frame-
works from the perspective of the user by comparing the
event handling latency and CPU and memory consumption
for events of increasing levels of difficulty. The contributions
of this paper are:

1. The definition of the difficulty of a GUI manipulation
event.

2. A detailed empirical analysis and comparison of the
run-time performance of two Java GUI creation frame-
works, Swing [12] and Thinlet [1].

3. Recommendations concerning the selection of a suit-
able GUI creation framework for classes of interactive
applications.

The remainder of this paper is organized in the follow-
ing manner. In Section 2 we use a simple definition of a
graphical user interface to define the difficulty of a GUI ma-
nipulation event and review the concept of event handling

latency. Section 3 provides an overview of Java GUI frame-
works and examines the two frameworks that we compare
in this paper. Section 4 describes the case study application
and states why it facilitates the investigation of the run-time
performance of GUI creation frameworks. In Sections 5 and
6, we describe the experimental design and the tools used
for measuring GUI event handling latency, CPU usage, and
memory consumption. In Section 7, we analyze the data re-
sulting from our experimentation with the Swing and Thin-
let frameworks. Section 8 reviews related work. Finally, in
Section 9 we summarize the performance of the selected GUI
frameworks and make recommendations concerning the se-
lection of a GUI creation framework for different classes of
interactive applications.

2. GRAPHICAL USER INTERFACES
It is often difficult to define the term user interface. In

this paper, we adhere to the intuitive definition provided by
Myers and Rosson [18]:

[...] we intend it to mean the software component
of an application that translates a user action
into one or more requests for application func-
tionality, and that provides to the user feedback
about the consequences of his or her action. This
software component (or components) would be
distinguished from the underlying computation
that goes on in support of the application func-
tionality.

For the purposes of this paper, we define a graphical user
interface G as a set of widgets, so that G = {W1, W2, . . . , Wn}.
Furthermore, we use the function SC(Wi) to compute the
current state of widget Wi and we have SC(Wi) = {w1, w2, . . . ,

wm}. Thus, we see that the state of graphical user inter-
face G is defined as S(G) =

� n

i=1 SC(Wi). While interface
toolkits often include the ability to describe the layout of
the widgets in the interface, our definition of a GUI ignores
layout and constraint issues because they do not directly
impact the investigation of the performance of GUI creation
frameworks.

There are a variety of definitions associated with the com-
plexity and usability of graphical user interfaces. For exam-
ple, Jeffries et al. examine four techniques for evaluating
user interfaces through usability testing and guidelines [10],
Comber et al. discuss information theoretic measures of in-
terface complexity [3], and Sears proposes the notion of lay-
out appropriateness by measuring the cost associated with
the manipulation of the widgets within a GUI [19]. Since
this paper focuses on the run-time performance of GUI cre-
ation frameworks, we are not concerned with the usability
or complexity of a specific interface. Instead, we focus on
the measurement of the event handling latency of GUI ma-
nipulation events of varying levels of difficulty.

According to Endo et al., the throughput of a system can-
not adequately characterize the performance of interactive
systems and they use event handling latency, or the time it
takes for a system to respond to a specific event, as a more
appropriate measure of performance [5]. In this paper, we
are specifically interested in the event handling latency of
GUI manipulation events. An example of a GUI manipula-
tion event might be the clicking of a button that executes a
structured query language (SQL) statement and then subse-

quently displays the resulting tuples in the interface. How-
ever, some GUI manipulation events might place a greater
demand upon the GUI toolkit code than others.

Endo et al. observe that “measuring latency for an arbi-
trary task and an arbitrary application remains a difficult
problem” [5]. During the measurement of the event han-
dling latency of GUI creation frameworks it is important to
distinguish between the latency that is associated with the
computation in the underlying application and the actual la-
tency resulting from the GUI manipulation code itself. We
use L(E) to denote the event handling latency for event E

and we require that L(E) = LA(E) + LG(E) with LA(E)
and LG(E) denoting the latency attributed to the under-
lying application and the latency associated with the code
for graphical user interface G, respectively. Any methodol-
ogy for measuring the event handling latency of an event E

must be able to measure the impact that LA(E) has on the
overall latency L(E). Our approach for handling this issue
is discussed in Sections 6 and 7.

Since the measurement of L(E) requires the execution of
the application under analysis, we desire a static metric that
is correlated with the latency that a GUI-based application
will exhibit when it handles GUI manipulation event E. To
this end, we define the worst-case difficulty of a GUI ma-
nipulation event in Equation (1). We use DA(E) to denote
the difficulty of the computation associated with the under-
lying application and we use DG(E) to represent the dif-
ficulty that is directly associated with the manipulation of
the graphical user interface. A formulation of DA(E) would
require an analysis of the algorithms used in a candidate
application and the Java virtual machine that executes a
program. Since the focus of this paper is an empirical inves-
tigation of the run-time performance of GUI creation frame-
works, we omit an analytical characterization of DA(E) and
we intuitively describe this function for a selected candidate
application in Section 7.

Equation (2) defines the worst-case difficulty of the ma-
nipulation of the GUI in terms of the number of widgets that
must be updated and added to graphical user interface G. In
Equation (2), we use Update(E) to compute the set of wid-
get indices that are updated by GUI manipulation event E.
An update event E might correspond to the changing of the
state of a checkbox widget from “checked” to “unchecked”
or the addition of a new row to a textarea widget. Further-
more, we use Add(E) to denote the set of the new widgets
that are going to be added to G and we use SN (Wi) to
compute the initial state of the newly added widget Wi. A
GUI manipulation event might add a new textarea to G and
then populate this textarea with several initial rows of text.
It is important to note that DG(E) computes a worst-case
measurement of the difficulty associated with GUI updates
and additions because it assumes that the event will update
every wj ∈ SC(Wi) for each i ∈ Update(E).

D(E) = DA(E) + DG(E) (1)

DG(E) = �
i∈Update(E)

SC(Wi)�
j=1

j + �
i∈Add(E)

SN (Wi)�
j=1

j (2)

3. JAVA GUI FRAMEWORKS
The Java language has given rise to many frameworks that

enable GUI development. These range from simple classes
that can be imported from the Abstract Window Toolkit

(AWT) to full toolkits that are created without the use of
the AWT. Some of the most commonly used GUI toolkits
for Java are the Eclipse Standard Widget Toolkit (SWT),
Swing, and Thinlet. Eclipse and Thinlet are both open-
source projects that allow the user to extend the framework,
if needed. In this paper, we evaluate and compare Swing
from Sun Microsystem’s Java Development Kit (JDK) and
the fifth beta release of Thinlet.

3.1 Java Swing
The Java Swing framework was developed as an exten-

sion to the AWT which Sun developed for use beginning
with JDK 1.1. Swing is an application program interface
(API) of approximately 50 components that allows the de-
veloper to create a more interactive interface. According to
Eckstein et al., the lightweight Swing components allow for
a more efficient use of resources [12]. Furthermore, since
Swing is written entirely in Java, cross-platform use is very
consistent and the look and feel across the entire application
is the same [12]. Recently, concerns have been raised about
the inherent abstraction level and object creation patterns
associated with the Swing toolkit and the impact that these
facets of Swing might have on the run-time performance of
applications that use the framework [22].

3.2 Thinlet
The Thinlet framework was developed by Robert Bajzat

and the first version was released on June 9th, 2002. Thinlet
takes a description of a GUI in the form of an eXtensible
Markup Language (XML) file and parses it using the Thin-
let API. The parsed file is then rendered on the screen as
the interface of the application. To parse a file in Thin-
let, the method parse(<file>.xml) is called, followed by
add(<parsedFileObject>), as shown in Figure 1.

1 public void ou tpu t f i l e {
2 Object f i l e ;
3 try {
4 f i l e = parse (” f i l e . xml”) ;
5 add(f i l e) ;
6 }
7 catch (Exception e)
8 e . p r in tS tack t race () ;
9 }

Figure 1: Java Class to Construct a Thinlet GUI.

Figure 2 contains the XML code for the interface. Cur-
rently, there are 22 widgets provided by the Thinlet toolkit.
Bajzat is in the process of developing more interactive com-
ponents that can assist in the development of GUI applica-
tions.

3.3 High Level Comparison
The Swing toolkit currently contains more components

than the Thinlet toolkit. In Swing, a dialog box is easily
created with a simple line of code, whereas in Thinlet the
developer must create an entirely new XML file and the Java
code must parse the file to display the contents to the screen.
In Swing, the components are not centered, while in Thinlet
all GUI components are automatically centered.

Since one of the motivations for the development of Thin-
let was to create a GUI toolkit that had a minimal memory
footprint (our measurements indicate that the jar compres-

1 < dia log columns=”1” height =”75” width=”250”>

2 <panel columns=”1” gap=”3”>

3 <l abe l text =”This i s from the f i l e ”/>

4 <button act ion ” Okay cl icked ” text =”Okay”/>

5 </panel>
6 </ dia log >

Figure 2: XML to Describe a Thinlet GUI.

sion tool produces a Thinlet archive whose size is approxi-
mately 44 KB), it is expected that a Thinlet-based applica-
tion will consume less memory than a Swing-based applica-
tion. However, a high level comparison of the two GUI cre-
ation frameworks does not reveal any concrete information
about the CPU usage patterns and event handling laten-
cies associated with each toolkit. Section 7 uses our empiri-
cal analysis to provide a more detailed comparison of these
frameworks.

4. CASE STUDY APPLICATION: VISUAL
DATABASE QUERYING TOOL

Our experiments rely upon a visual database querying ap-
plication that allows the user to interactively create queries
by selecting the tables, attributes, and comparison operators
through a graphical interface. The program uses the infor-
mation that the user selects to build a query and display
the results in the form of a table. We created the appli-
cation to retrieve information from a PostgreSQL database
[6], although the particular choice of database management
system is irrelevant to the experiments.

Our choice of a database querying application enables us
to control the difficulty of a GUI manipulation event by
changing the tuples stored within our relational database.
For example, the candidate application can be used to con-
struct a SQL query and the data within the chosen rela-
tion(s) can be modified to control DG(E), the difficulty of
the GUI manipulation event directly associated with the up-
date of existing widgets and the addition of new widgets. If
the SQL query returns a significant number of tuples, this
will cause the textarea widget, say Wi, to be associated with
a SN (Wi) of a high cardinality. If a GUI manipulation event
E corresponds to the clicking on a button, the submission
of this SQL query to the database, and the display of the
final results, a large SN (Wi) will increase D(E), the over-
all difficulty of this event. An experiment that appropriately
characterizes the DA(E) and measures the LA(E) associated
with an event E can determine the impact that a change in
D(E) has on L(E) for different GUI creation frameworks.

5. EXPERIMENTAL DESIGN
Three tools were used to analyze the GUI frameworks.

The first was the standard resource monitoring tool, top.
The second was Microsoft Performance Monitoring version
4.0 and the third was an API by Mike Clark of Clarkware
Inc., called Profiler [2]. The measurements taken were based
on three different table sizes. For example, the size of one
of our database tables ranged from 25 tuples to 2500 tuples.
Using a select * query while varying the size of the table,
we produced result sets of sizes 25, 250, and 2500 tuples. As
discussed in Section 4, the creation of varied result set sizes
allowed us to control the DG(E) associated with the GUI
manipulation event E. The varied sizes of the result sets

were only utilized when performing event handling latency
experiments; all experiments for CPU usage and memory
consumption used the largest table size and are thus associ-
ated with the highest DG(E) values.

All experiments were performed five times on each appli-
cation. After conducting each experiment, we restarted the
computer system to clear the memory and CPU of all inter-
ferences. This ensured that we had valid results, given lim-
ited experimentation. To avoid interference from any back-
ground activity, we also made sure that there was only one
user on the system. We used a Pentium III, 533 Mhz with
128 megabytes of RAM to perform one set of experiments
under both Debian/GNU Linux using the JVM 1.4.1 and
Microsoft Windows NT with JVM 1.4.0. For the Solaris ex-
periments, we used an UltraSPARC-5 Sun4u 360 Mhz with
128 megabytes of RAM running Solaris 8 and using JVM
1.4.1.

6. EXPERIMENTS
In order to examine GUI event handling latency we de-

signed five distinct experiments: initial startup of the ap-
plication (E1), loading the first screen for database table
selection (E2), loading the second screen for attribute se-
lection (E3), loading the third screen for relational operator
selection (E4), and viewing the final query results with three
different table sizes (E5).

1 The second, third and fifth ex-
periments include a database latency within the event han-
dling latency. This is due to an unavoidable constraint set
by Thinlet; to have comparable results, we incorporated the
same constraint into the Swing application. However, these
measurements do show the user-perceived performance to
obtain the final query and also the latency for GUI com-
ponents in both Swing and Thinlet. Experiment four is
similar to experiments two, three, and five, but without the
database latency. The experiments include the measure-
ment of event handling latency and the CPU and memory
usage associated with handling the events. The latency and
memory measurements were taken by Profiler and the mea-
surements of CPU usage relied upon top and Microsoft Per-
formance Monitoring version 4.0.

7. EXPERIMENTAL RESULTS
The experiments performed on the two applications al-

lowed us to see which GUI creation framework would per-
form better when used on different operating systems. The
results of these experiments show that the Thinlet GUI cre-
ation framework often outperforms the Swing framework at
run-time in both the latency and CPU experiments. Al-
though Thinlet surpasses Swing in the majority of experi-
ments, Swing is still more useful in certain areas. For ex-
ample, the Swing-based version of the candidate application
demonstrates lower event handling latencies for difficult GUI
manipulation events.

7.1 Latency Results
Initially, we conducted a simple experiment to determine

the event handling latencies and memory consumption char-
acteristics associated with a GUI manipulation event that
added a single row to one textarea. We performed this GUI

1To ensure conformance to our previously established nota-
tion, we use El to refer to the GUI manipulation event that
was used during experiment l.

manipulation five times and we report the average event
handling latency times in Table 1(a) and the average mem-
ory consumption in Table 1(b). The difference in event han-
dling latencies is noticeable in the Solaris operating system,
with Thinlet reporting a lower event handling latency by ap-
proximately 2 ms. However, the difference in event handling
latency for the two toolkits on the Windows and Linux OSes
is negligible. As expected, the Swing-based application con-
sumes on average 516 more bytes than the Thinlet-based
one across the three selected operating systems.

Latency Time (ms)
OS Thinlet Swing

Solaris 4 6.33
Linux 3.16 3.66

Windows 3.33 3.33

(a)

Memory Used (bytes)
OS Thinlet Swing

Solaris 392 992
Linux 312 748

Windows 334.66 846.66

(b)

Table 1: Event Handling Latency and Memory Con-
sumption for Single Addition to a Textarea.

The results of the latency experiments on the two frame-
works show that, in most cases, the Thinlet application
completed the GUI manipulation event with less latency.
Figure 3(a) shows the first four experiments, labeled with
the DG(E) values for each of the GUI manipulation events.
Figure 3(b) shows experiment five, (time needed to ob-
tain the final queried results) for three different table sizes.
Each group of six bars shows Solaris/Thinlet, Solaris/Swing,
Linux/Thinlet, Linux/Swing, Windows/Thinlet, and Win-
dows/Swing. We see that the startup time of the Swing
application was often almost double that of the Thin-
let. Furthermore, it is important to observe that L(E1)
is roughly equivalent to L(E5) even though DG(E1) = 12
and DG(E5) = 2500. Since E1 incurs the computation costs
associated with starting the JVM and initially creating a
significant number of object instances associated with the
GUI toolkit, we believe that DA(E1) is significantly greater
than DA(E5). However, in all other experiments, the value
of DG(E) is an appropriate predictor of the overall latency
associated with the GUI manipulation event.

Experiment four does not contain database latency, un-
like experiments two and three. This shows that, with or
without querying a database, Swing takes more than twice
as much time as Thinlet to complete the GUI manipula-
tion event. Experiment five shows that there is very lit-
tle difference between Thinlet and Swing when dealing with
GUI manipulation events of small or moderate difficulty lev-
els. However, when dealing with difficult GUI manipulation
events, Thinlet often has a much higher latency than Swing.
On the Windows operating system, Thinlet and Swing per-
form more equally when conducting strenuous GUI manipu-
lations, but for the other two experiments, Swing clearly out-

DG HE1 L=12 DG HE2 L=6 DG HE3 L=15 DG HE4 L=15
GUI Manipulation Events

1000

2000

3000

4000

5000

6000

7000
L
a
t
e
n
c
y

HmsL
DG HE1 L=12 DG HE2 L=6 DG HE3 L=15 DG HE4 L=15

Swing

Thinlet

(a)

DG HE5 L=25 DG HE5 L=250 DG HE5 L=2500
GUI Manipulation Event at Varied Difficulty Levels

1000

2000

3000

4000

5000

6000

L
a
t
e
n
c
y

HmsL

DG HE5 L=25 DG HE5 L=250 DG HE5 L=2500

Swing

Thinlet

(b)

Figure 3: Event Handling Latency Results on Solaris, Linux, and Windows.

performs Thinlet. These measurements suggest that Swing
is preferable if the application does large scale GUI manipu-
lations. However, for less difficult GUI manipulation events,
Thinlet should be selected because the framework quickly
starts up and displays the results of less difficult GUI ma-
nipulation events with less latency.

7.2 CPU and Memory results
We measured the average CPU usage during the time re-

quired to complete the selected GUI manipulation events.
According to Figure 4, experiment one, the CPU usage fluc-
tuates between operating systems and JVMs. In this first
experiment, the Thinlet application uses less CPU than the
Swing application on Linux and Windows. For the Solaris
OS, the Thinlet application nominally uses more CPU than
the Swing application. Experiments two, three, and four all
show that the Thinlet application often uses less CPU than
the Swing application. Figure 4 also shows that there is
a downward trend in CPU usage from the initial startup to
the transition from one GUI screen to another. Figure 4, ex-
periment five, shows an upward turn in CPU usage, which is
expected since this is where the application heavily manip-
ulates the GUI. Experiment five also shows that the Swing
application uses less CPU than the Thinlet application when
rendering a large amount of data to the GUI interface. Inter-
estingly, the Swing-based application uses less of the CPU
and still provides lower event handling latencies when the
toolkit is responsible for handling a difficult GUI manipula-
tion event.

For both the Thinlet and Swing applications, the mem-
ory usage increases at initial startup, stays constant over
the course of the application, and then decreases once the
application is exited. Both of the frameworks maintain sim-
ilar memory usage levels during experiments two, three, and
four. For example, when these experiments were executed
on a Solaris machine, memory usage remained constant at
83 and 84 megabytes for Thinlet and Swing, respectively.

8. RELATED WORK
Our analysis of the run-time performance of GUI creation

frameworks is related to three avenues of research: GUI cor-
rectness testing, analysis of interactive system performance,
and the evaluation of Java program performance. GUI test-

DG HE1 L=12 DG HE2 L=6 DG HE3 L=15 DG HE4 L=15 DG HE5 L=2500
GUI Manipulation Events

20

40

60

80

100

C
P
U
U
s
a
g
e

H%L

DG HE1 L=12 DG HE2 L=6 DG HE3 L=15 DG HE4 L=15 DG HE5 L=2500

Swing

Thinlet

Figure 4: CPU Usage Results on Solaris, Linux, and
Windows.

ing research conducted by Memon et al. has focused on
the proposal of novel GUI coverage criteria [16], the auto-
matic creation of test oracles [15], and the implementation
and analysis of automated test data generation algorithms
[14]. While Memon et al. have focused on the creation
of test suites that attempt to cover GUI event sequences,
Kasik et al. have addressed the issues related to the gener-
ation of test suites that mimic the behavior of novice users
[11]. Yet, none of these research efforts have concentrated
on the testing of applications with respect to performance
or the explicit testing of the frameworks that facilitate the
construction of GUIs.

Guynes et al. and Shneiderman have motivated the in-
vestigation of interactive system performance by observing
that user satisfaction is tightly coupled to the performance
of the user interface [7, 20]. Endo et al. have examined
the issues surrounding the measurement of interactive sys-
tem performance and the construction of toolkits to obtain
user-perceived performance metrics [4, 5]. However, Endo
et al. focused on the usage of latency to measure the perfor-
mance of Windows NT and Windows applications and did
not address the issues associated with Java-centric perfor-
mance analysis. Horgan et al. did examine the platform-

independent analysis of Java program performance at the
bytecode level [9] and Harkema et al. implemented an event-
driven monitoring system for Java applications [8]. To the
best of our knowledge, no research has specifically focused
on the performance analysis of GUI creation frameworks for
the Java programming language.

9. CONCLUSION
The graphical user interface is an important component of

many applications and recent surveys indicate that the GUI
can represent 60% of the overall source of a program [13].
GUI creation frameworks present an exciting alternative to
the manual coding of a graphical interface. Since the run-
time performance of a GUI can have a significant impact
on the user-perceived performance for an entire application,
it is clearly important to investigate the performance char-
acteristics of GUI toolkits. In this paper, we examine the
run-time performance of Swing and Thinlet, two GUI cre-
ation frameworks that can be used to construct graphical
interfaces for programs written in the Java programming
language.

The latency, CPU, and memory results gathered during
these experiments can help a developer to understand dif-
ferent facets of the performance of each GUI creation frame-
work. The experiments showed that the Thinlet frame-
work often outperformed the Swing framework in terms of
event handling latency and memory consumption. We have
demonstrated that Thinlet should be selected if an applica-
tion only performs GUI manipulation events of low or mod-
erate levels of difficulty. However, we have also shown that
Swing is better suited for the construction of GUIs that re-
quire significantly more difficult GUI manipulation events.
Since there has been very little research in the field of GUI
performance analysis, we are unable to compare the results
of our experiments to prior research. Ultimately, the selec-
tion of a GUI creation framework depends upon the applica-
tion to be developed and the manner in which the program
uses the graphical interface.

10. REFERENCES
[1] Robert Bajzat. Thinlet. http://www.thinlet.com.

[2] Mike Clark. Profiler. http://www.clarkware.com.

[3] Tim Comber and John Maltby. Investigating layout
complexity. In Proceedings of the International
Workshop of Computer-Aided Design of User
Interfaces, Namur, Belgium, 1996. Namur University
Press.

[4] Yasuhiro Endo and Margo Seltzer. Improving
interactive performance using TIPME. In Proceedings
of the 2000 ACM SIGMETRICS International
Conference on Measurement and Modeling of
Computer Systems, pages 240–251. ACM Press, 2000.

[5] Yasuhiro Endo, Zheng Wang, J. Bradley Chen, and
Margo Seltzer. Using latency to evaluate interactive
system performance. In Proceedings of the Second
USENIX Symposium on Operating Systems Design
and Implementation, pages 185–199. ACM Press, 1996.

[6] Ewald Geschwinde and Hans-Jürgen Schönig.
PostgreSQL Developers Handbook. O’Reilly, first
edition, 2002.

[7] Jan L. Guynes. Impact of system response time on
state anxiety. Communications of the ACM,

31(3):342–347, 1988.

[8] M. Harkema, D. Quartel, B. M. M. Gijsen, and R. D.
van der Mei. Performance monitoring of Java
applications. In Proceedings of the Third International
Workshop on Software and Performance, pages
114–127. ACM Press, 2002.

[9] Jane Horgan, James Power, and John Waldron.
Measurement and analysis of runtime profiling data
for Java programs. In IEEE International Workshop
on Source Code Analysis and Manipulation, pages
124–132. IEEE Computer Society Press, November,
2001.

[10] Robin Jeffries, James R. Miller, Cathleen Warton, and
Kathy Uyeda. User interface evaluation in the real
world: a comparison of four techniques. In Proceedings
of the SIGCHI conference on Human Factors in
Computing Systems, pages 119–124. ACM Press, 1991.

[11] David J. Kasik and Harry G. George. Toward
automatic generation of novice user test scripts. In
Conference proceedings on Human Factors in
Computing Systems, pages 244–251. ACM Press, 1996.

[12] Marc Loy, Robert Eckstein, Dave Wood, James
Elliott, and Brian Cole. Java Swing. O’Reilly, second
edition, 2002.

[13] Atif M. Memon. GUI testing: Pitfalls and process.
IEEE Computer, 35(8):90–91, August 2002.

[14] Atif M. Memon, Martha E. Pollack, and Mary Lou
Soffa. Using a goal-driven approach to generate test
cases for GUIs. In Proceedings of the 21st
International Conference on Software Engineering,
pages 257–266. IEEE Computer Society Press, 1999.

[15] Atif M. Memon, Martha E. Pollack, and Mary Lou
Soffa. Automated test oracles for GUIs. In Proceedings
of the 8th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 30–39.
ACM Press, 2000.

[16] Atif M. Memon, Mary Lou Soffa, and Martha E.
Pollack. Coverage criteria for GUI testing. In
Proceedings of the 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 256–267. ACM Press, 2001.

[17] Brad Myers, Scott E. Hudson, and Randy Pausch.
Past, present, and future of user interface software
tools. ACM Transactions on Computer-Human
Interaction (TOCHI), 7(1):3–28, 2000.

[18] Brad A. Myers and Mary Beth Rosson. Survey on user
interface programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 195–202. ACM Press, 1992.

[19] Andrew Sears. Layout appropriateness: A metric for
evaluating user interface widget layout. IEEE
Transactions on Software Engineering, 19(7):707–719,
1993.

[20] Ben Shneiderman. Response time and display rate in
human performance with computers. ACM Computing
Surveys, 16(3):265–285, 1984.

[21] James A. Whittaker. What is software testing? and
why is it so hard? IEEE Software, 17(1):70–76,
January/February 2000.

[22] Alan Williamson. Swing is swinging Java out of the
desktop. Java Developer’s Journal, 7(10), October
2002.

