

RF 2002RM-037: page 1 RF

An Approach for Understanding and Testing
Third Party Software Components

Jennifer M. Haddox * Cigital Labs * Dulles

Gregory M. Kapfhammer * Allegheny College * Meadville

Christoph C. Michael * Cigital Labs * Dulles

Key Words: Commercial-off-the-shelf (COTS) software, Software wrapping, Software reliability, Software reuse, Java,
bytecode instrumentation, Fault Injection, Assertions.

SUMMARY & CONCLUSIONS

 In this paper we present an approach to mitigating software
risk by understanding and testing third party, or commercial-
off-the-shelf (COTS), software components. Our approach,
based on the notion of software wrapping, gives system
integrators an improved understanding of how a COTS
component behaves within a particular system. Our
approach to wrapping allows the data flowing into and out of
the component at the public interface level to be intercepted.
Using our wrapping approach, developers can apply testing
techniques such as fault injection, data collection and
assertion checking to components whose source code is
unavailable.
 We have created a methodology for using software
wrapping in conjunction with data collection, fault injection,
and assertion checking to test the interaction between a
component and the rest of the application. The methodology
seeks to identify locations in the program where the system’s
interaction with COTS components could be problematic.
Furthermore, we have developed a prototype that implements
our methodology for Java applications. The goal of this
process is to allow the developers to identify scenarios where
the interaction between COTS software and the system could
result in system failure. We believe that the technology we
have developed is an important step towards easing the
process of using COTS components in the building and
maintenance of software systems.

1. INTRODUCTION

 The use of commercial-off-the-shelf (COTS) software
components has become increasingly prevalent in recent
years. COTS components usage, however, has resulted in a
new set of problems that are not present when large systems
are built and maintained using custom-built software.
Because a COTS component is not specifically created for the
application into which it is integrated, it may not meet all of
the application's requirements. Furthermore, the source code
for a COTS component is rarely made available to the buyer.

Even if source code were available, determining how a COTS
component will behave once it is integrated into a software
system can still be difficult indeed (Ref. 9).
 In order to address these problems, we have created a
methodology and a tool meant to aid developers when they
attempt to integrate a COTS component into their
applications. Our approach, based on the notion of software
wrapping, focuses on helping system integrators gain an
improved understanding of how a COTS component interacts
with the rest of the system into which it is integrated. A key
goal is to give system integrators a strategy for dealing with
COTS components without becoming any more dependent on
the vendor of the component than necessary.
 The remainder of this paper is organized as follows. Section
2 discusses some issues regarding COTS component usage.
Section 3 clarifies the motivation of our research and explains
some of the goals it has intended to fulfill. Section 4 provides
a high-level overview of software wrapping as well as a
description of how it can be used in conjunction with other
technologies to deal with some of the problems presented by
COTS components. Section 5 describes our implementation
of software wrapping. Section 6 deals with ideas for future
work.

2. COTS COMPONENT OVERVIEW

 The use of third party software components, such as
commercial-off-the-shelf products, has become more and
more common in the building and maintenance of large
software systems. Corporate downsizing and decreased
government budgets, as well as the spiraling costs of building
and maintaining large software systems, have necessitated the
reuse of existing software components (Ref. 16). In addition,
reusing existing software can potentially reduce the time-to-
market. Finally, another important issue to consider is that,
simply put, programmers are expensive. Why pay an entire
team of developers to create a component from the ground
up, when it is cheaper to simply pay a few developers to
integrate a pre-existing component into a new application?
For reasons such as these, very few large-scale software

RF 2002RM-037: page 2 RF

systems are built from scratch. Commercial-off-the-shelf
(COTS) components, legacy software, and custom-built
components comprise today's large software systems (Ref. 6).
 COTS components are defined by Vigder and Dean as
“components which are bought from a third-party vendor and
integrated into a system” (Ref. 13). However, according to
Ref. 5, a more detailed and expanded view of COTS
components should be taken. A COTS component could be as
“small” as a routine that computes the square root of a
number or as “large” as an entire library of functions. The
important point is that a COTS component already exists and
was created by people outside of the software development
organization that will actually use it (Ref. 5).
 Though employing COTS components in the building and
maintenance of a large system can provide some benefits,
COTS component usage presents some unique problems as
given by Ref 1 and Ref. 13:
1. COTS component source code is often unavailable; thus,
the component must be analyzed and tested as a “black box.”
2. Updates and evolution of a COTS component are provided
by the vendor. New functionality of an updated component
could be detrimental to specific applications that use it. In
fact, functionality in the original component could also be
problematic.
3. The vendor often fails to provide a correct or complete
description of the COTS component's behavior. This can
result in the buyer of the component having to guess how the
component is meant to be used or how it is supposed to
behave. Worse yet, the buyer could end up using the
component in a manner the vendor did not intend.
Unanticipated uses could compromise the reliability of both
the COTS component and the application into which it is
integrated.
4. Maintenance can become an issue because the vendor may
not correct defects or add enhancements as the buyer needs
them. Developers in the organization that purchased the
component may be forced to make modifications themselves,
which can be quite difficult if the component’s source code is
unavailable or if the component’s specification is poor.
 Clearly, the creation or maintenance of systems that use
COTS components is by no means a trivial endeavor. On the
contrary, integrating COTS components into an application is
prone to error, can require a significant amount of coding,
and can be problematic to test properly (Ref. 13).

3. MOTIVATION AND FOCUS OF THIS RESEARCH

 Due to financial and time-to-market considerations,
software development organizations have become
increasingly reliant on software provided by third parties for
functionality that is needed for the creation and maintenance
of applications. The goal of our research was to create a tool
and methodology that would return a greater measure of
control to organizations using component-based systems. In
creating our software wrapping technology, we address the
following issues:
1. Since source code is often not available for a COTS
component, our approach can be applied to a component
regardless of whether the buyer has source code for the

component. In short, our approach is not coupled to source
code at all.
2. Though cooperation from the vendor is desirable, our
approach can be applied regardless of the vendor's degree of
involvement following the purchase of the component.
 These issues provided a focus for the direction of our work.
By keeping them in mind we developed the approach that is
described in the next section.

4. USING SOFTWARE WRAPPING TO ADDRESS COTS

CHALLENGES

 System developers cannot depend on the vendor of the
COTS component to ensure that the purchased component
will behave properly in the system in question. Hence it is up
to the system designers to ensure that the COTS component
will not adversely affect the behavior of the system in which
it will be used. In this section we present our version of
software wrapping as well as a method for using it that will
allow developers to mitigate COTS component risk.

4.1 High-level Overview of Our Software Wrapping
Approach
 The approach that we have researched and developed,
which is based on the concept of software wrapping, can aid
developers in their efforts to test and verify COTS
components. Conceptually, this approach requires an
additional layer of software, called a wrapper, to encase the
COTS component. As shown in Figure 1, the wrapper is
responsible for intercepting any input that the system might
send to the component or output that the component would
send back to the system. In the context of this research
project, we define input and output to mean the information
being given to and returned from the component at the public
interface level. The hope is to isolate the COTS component
during the testing process in order to understand whether or
not it is interacting with the rest of the system as expected.
 Once access to the component's input and output is gained,
a variety of testing operations can be performed to provide an
improved understanding of the component's interaction with
the rest of the system. For example, the wrapper can be
hooked up to a mechanism that simply monitors, records, and
stores the input and output of the component for observation.
This can be particularly helpful when the system is comprised
of multiple COTS components. Consider the situation where
one COTS component's output becomes another COTS
component's input and source code is not available for either
component. If both components are encased in wrappers, then
the person testing the system gets a glimpse as to what is
occurring when those two components interact.
 In general, the user of a system that implements the
wrapping approach can decide which testing techniques to
use. For the purposes of our research, we focus on applying
the testing techniques of fault injection, data collection and
assertion checking to the input and output of a COTS
component via wrapping. By fault injection (Ref. 14) we
mean corrupting the data that is being passed between
components to present the system with scenarios not found in
typical testing. Data collection simply refers to exporting

RF 2002RM-037: page 3 RF

various internal data states of the system to a file, database,
etc. for later observation (as described in the example in the
previous paragraph). Assertions (Refs. 10, 11, 15) are rules
for system behavior defined by the developer. In the context
of this paper, these rules specify acceptable behavior at
component interfaces. These rules are integrated into the
application and checked at runtime. If a rule is violated, then
some sort of error handling code executes to handle the
situation, or at the very least, notification is given that an
assertion has been violated.

Figure 1: Conceptual View of a Wrapper

4.2 A Method for Applying Software Wrapping
 Though it would be ideal to be able to gain a complete
understanding of the internal implementation of an individual
COTS component, it is still of value to learn about the data
the COTS component will interchange with the buyer's
system. Thus, understanding the public interface of the
component and what the rest of the system expects when
interacting with that interface is of benefit. This process can
begin by the development organization establishing
requirements for the system's interaction with the new
component. Those building the system should have an idea of
what types of inputs their system will provide to the COTS
components and what types of information the system can
expect to receive back from the component. Armed with this
knowledge, the system developers can now begin to utilize
the concept of wrapping. For it is the wrapping technique we
have just described that will allow our methodology to be
applied to a COTS-based system (or more generally, any
system consisting of some components whose source code is
not available).
 The goal of this process is to allow the developers to
identify scenarios where the interaction between COTS
software and the system could result in system failure. The
first step developers must take is defining assertions to
govern how the COTS components in question should
interact with the application of which they are a part. The
application is then tested with the assertions in place. During
these executions fault injection is applied at component
interfaces in an attempt to determine under what situations
the system (and the individual COTS components) can fail.
 Specifically, we can use fault injection to supplement the
input values that the COTS components would receive from
the system. Using fault injection to perturb the components’
“normal” inputs can allow for observation of how these
components react to inputs not usually encountered during
testing. In this case we are trying to determine which kinds of
inputs make these components fail. We can then begin to
refine the assertions that define acceptable input to the

components based on the reaction of the components to
perturbed input.
 By perturbing the input, we can also see when the
assertions that define the COTS components’ acceptable
output are violated. If certain types of input always result in
such a violation, then we can further strengthen the assertions
defining the input based on this information. The goal of this
process it to identify scenarios that would make the COTS
components crash, and then account for those situations in the
assertions.
 Fault injection can also be applied to the COTS
components’ output to determine how the rest of the system
will react to data produced by these components. Once
outputs that result in failure are identified, the assertions
defining the components’ output can be refined as well.
 When an assertion in the system is violated by fault
injection, or some bug existing in the system causes it to fail,
data collection comes into play. Data collection can be used
to export state information at locations in the code where
fault injection is applied. Also, of use is collecting data where
assertions fail. The developers can of course specify that data
collection occur at specific locations where they would like
more information about the internal state of the system. This
can provide the developer with helpful information if the
system fails on a particular test run. As problems with the
code are discovered through this testing process, the tester
may want to modify the application (if possible) to account
for these problems. The methodology that we just described
appears in Figure 2.
 Consider the following example to clarify this discussion.
Assume a group of developers has a component X that is to
be integrated into their system. For a particular operation in
X that takes an integer i as input , the developers create an
assertion specifying that whenever the system invokes this
operation, i must be greater than zero. The developers then
specify that data collection be performed whenever this
particular operation in X is invoked. When the developers test
the entire system and apply fault injection to i, they may
notice that X does indeed cause a system failure when i is less
than zero. They may also note that X causes a failure when i
is assigned values greater than one thousand. Thus, they may
want to redefine their assertion to state that i must be greater
than zero and less than one thousand.
 By creating assertions and applying fault injection, and then
studying the additional output of the program provided via
data collection, the developers can gain an improved
understanding of how the COTS components are interacting
with the application. They can then refine their assertions to
account for potential failure situations they discovered by
stepping through the process we have discussed. The end goal
is to create assertions that will account for as many situations
as possible that can result in system failure.
 Once these potential problem scenarios are discovered and
assertions are created to account for them, some action must
be taken for the case of assertion failure. With our current
implementation of the methodology, the only option is for the
developers to modify their own code to account for problems
that could result from the COTS software being integrated
into the system. In some cases this is appropriate. A COTS

 System

 Wrapper

 Component

Input Output

RF 2002RM-037: page 4 RF

component could very well be the source of problems
because some custom built component in the system may be
using it improperly. Thus, the custom component should be
modified in this case.

Figure 2: Overview of Methodology

 It is certainly possible, however, that the COTS component
itself is the problem. In this case, it would be ideal for the
developers to have some method of modifying that
component’s behavior. As stated, the wrapping technology
we have developed does not allow functionality to be
modified in a component whose source code is not available;
it only allows input and output data to be intercepted. Thus,
the developers must adapt their system to account for
problems caused by COTS software. In Section 6 we describe
an extension of our current prototype that would allow for
COTS functionality to be modified. First though, we give a
description of the tool that we built.

5. IMPLEMENTING SOFTWARE WRAPPING

 Now that we have explained the high-level overview of our
approach and how it can be applied to a COTS-based system,
we shall describe the underlying technology that makes it
possible. This section will provide a brief listing of the
requirements for our tool, a description of our
implementation, and a summary of the benefits and
drawbacks of this implementation.

5.1 Requirements
 Several groups, such as Ref. 3 and Ref. 9, have already
focused on some variation of the concept of wrapping. Our
research has specifically focused on devising a method to
apply wrapping to object-oriented components whose source
code may not be available. We initially chose Java as our

candidate language due to its increasing popularity. From this
point on, we shall define a component as a Java class, and the
two terms will be used interchangeably.

When performing the analysis to devise a solution
for wrapping object-oriented components, we kept the
following general requirements for a wrapping prototype in
mind:
1. Wrapping a component must not change the core
functionality of any program that utilizes the wrapped
component. While a wrapping approach might introduce a
slight execution overhead, it should not destroy the
functionality of systems that previously executed in a correct
fashion
2. Our implementation must allow the methodology
described in Section 4 to be applied to Java applications.
3. The user of a wrapping tool should be able to turn the
wrapping mechanism on and off at system start-up time. For
example, a system integrator should be able to add a
“wrapper flag” to the command line statement that starts an
application in order to indicate that wrappers should become
active.
4. The wrapper must be able to handle any operation that is
advertised by a Java interface and provide the ability to
intercept information at method entries and method exits
(whether it is an expected or unexpected exit), thus allowing
input and output data to be intercepted as described in Section
4.

5.2 Implementation
 We have taken the general notion of software wrapping and
built a prototype that allows this approach to be applied to
object-oriented components written in Java. Before
describing this approach, we shall provide some basic
information about Java. All programs written in the Java
programming language are converted into bytecode by the
Java compiler. The bytecode is then interpreted and executed
by the Java Virtual Machine, which is a sort of “abstract
computer” that can be implemented in the hardware but
normally is implemented in the form of a software program
(Ref. 4). Thus, bytecode is basically the portable assembly
language of the Java Virtual Machine (Ref. 4).
 The approach that we employed ended up being somewhat
unconventional, in that it goes against the conceptual view of
a wrapper given in Section Four. The solution is specific to
Java and relies on bytecode instrumentation. The original
component’s bytecode is instrumented such that the input and
output of a method can be captured and monitored.
 Using our bytecode instrumentation technology, one can
access and modify the bytecode of a Java class that is to be
wrapped. More specifically, one can intercept and capture
the input and output of methods of the class to be wrapped
and transfer that information to some subsystem that would
perform testing operations on the captured input/output data.
Our technology uses a third party software package called
JavaClass (Ref. 2) to aid in the bytecode instrumentation
process.
 Additionally, we have implemented the testing techniques
described in Section Four. We have created fault injection,
data collection and assertion checking subsystems that can be

No

Yes

Start

Define
Assertions

Test with
Fault Injection

Refine
Assertions

Correct problems
in system if
necessary or
possible

Analyze
Test Results

End

Program
Failed?

RF 2002RM-037: page 5 RF

used in conjunction with our wrapping tool. More
information on these subsystems and how they are used in
conjunction with our implementation of wrapping can be
found in Ref. 7.
 Note the fact that all instrumentation of a class to be
wrapped is performed at runtime. This is accomplished via a
custom class loader, which intercepts the request to load a
class to be wrapped. All classes are loaded from disk into the
Java Virtual Machine at runtime by a class loader that is part
of the Java Development Kit (JDK) (Ref. 12). However, it is
possible to create one’s own class loader that can be used in
place of the one that comes with the JDK. We took this
approach in order to allow our tool to instrument the bytecode
of a class at runtime. Before a class to be wrapped is loaded
into the Java Virtual Machine, our bytecode instrumentation
subsystem gains access to it and modifies it. Then, the
instrumented version of the class is loaded into the Java
Virtual Machine. Once the execution of the application
completes, no trace of the modifications is left behind. The
original class still resides on disk.
 The user creates an Instrumentation Configuration File
(ICF) in which the classes to be wrapped are specified. One
can also use an ICF to specify that only certain methods in a
class be wrapped (i.e., certain methods are instrumented such
that their input/output is intercepted). This file then becomes
input to our system, and based on what is specified in the file,
certain classes are intercepted by our custom class loader,
instrumented, and then loaded into the Java Virtual Machine
by our custom class loader. The rest of the system never has
knowledge that wrapping occurred in the first place. See
Figure 3 for a high level diagram of the wrapping subsystem.

Figure 3: High Level Overview of Wrapping System

5.3 Benefits to Our Approach
 There are several important advantages to our approach that
are worth noting. First of all, the approach is in no way
dependent on access to the source code of the component
being wrapped. Further, it is not dependent upon support of
the vendor of the component. In keeping with our
requirements, the wrapping mechanism can be turned “on” or
“off” at the time the system in question is to be executed and
does not corrupt the normal behavior of that system.
Additionally, our approach allows testing techniques such as

fault injection and assertion checking to easily be applied to a
component whose source code is unavailable. Thus, our
implementation supports the methodology described in
Section 4. Finally, a user can easily create his or her own
subsystem that would perform some testing operation on the
captured input and output. Our system was designed such that
a new subsystem could easily be used in conjunction with our
wrapping technology.

5.4 Drawbacks
 Though this approach is effective, it does suffer from some
drawbacks. A potential limitation with this approach has to
do with the fact that all methods in Java have a 64KB limit on
their size. Since we are increasing the size of a method with
this approach as we are adding to its bytecode, it could be
possible to exceed this limit, though it is not likely.
Additionally, one cannot use direct bytecode instrumentation
to wrap native methods (functions written in some other
language, such as C, that can be invoked by a Java program)
since native methods have no bytecode. Thus, our solution
does not completely fulfill the requirement that a wrapping
system should be able to handle any operation advertised by a
Java interface. Finally, our actual implementation is coupled
to Java as it relies on bytecode instrumentation.

6. FUTURE WORK

6.1 Continuing Evaluation
 In the future we would like the opportunity to test our
prototype and methodology on a real world Java application
that was partially constructed from third party components.
We did complete some preliminary testing on our tool by
using a testbed system that we constructed for this project.
When applying our tool to the testbed system, the tool always
produced “wrapped” classes capable of running within the
Java Virtual Machine and interacting with the other classes
without causing a disruption in the expected behavior of the
system. Using the wrapping system in conjunction with the
data collection, fault injection and assertion checking
subsystem, we were able to uncover errors in the testbed
system (Ref. 7). Using our tool on a real world Java
application, however, would provide a much more rigorous
test of the effectiveness of our approach.

6.2 Extending the Technology
 We eventually hope to use the research we conducted and
the prototype we developed to create a methodology, loosely
based on the methodology presented in Ref. 8, and a tool
whose primary purpose is the disabling or modification of
problematic functionality in COTS components. At a high
level, our methodology would consist of three steps:
1. Learn the behavior of the component within the system.
2. Modify the appropriate portion of a component with
problematic functionality.
3. Test the modified component in the system.
 The user of this tool will be given several methods of
learning about the behavior of the component in question.
The user will be able to apply our fault injection, data
collection, and assertion checking techniques, all of which

uses

uses

Custom
Class Loader

Bytecode
Instrumenter

JavaClass

ICF

input output

Components to
be wrapped

“Wrapped”
Components

RF 2002RM-037: page 6 RF

we will expand and improve for the construction of this tool.
Additionally, techniques for machine-learning based
inference of component behavior will be developed. We will
also create a unit-testing framework that can be used to test
the component in isolation. We will then build on our
bytecode instrumentation technology in order to allow the
user a means of modifying a component’s functionality. The
user will then be able to utilize our fault injection and
assertion checking systems to test the modified component to
determine if the changes made are having a negative impact
on the system’s behavior.
 The unit-testing framework would be used to perform
regression testing on the component. Before the component
is modified, our data collection system can be used to record
and store inputs to the component during execution of the
system. The unit-testing framework will be capable of
feeding these stored inputs back into the component. The goal
will be to determine if the behavior of the modified
component is different from that of the original.
 We believe that the creation of such a tool could further aid
those using COTS components in the building and
maintenance of their applications.

7. CONCLUSIONS

 The increasing use of third-party COTS components can in
theory lead to reduced costs and faster development cycles,
but these advantages can come at a steep price. With their
applications dependent on the behavior of components from
third parties, developers and integrators have suffered a loss
of control. Thus, our goal with this project has been to help
developers and integrators regain some control of their
COTS-based systems.
 With this research project, we have developed an
innovative approach to testing object-oriented COTS
components. We have created a methodology based on
software wrapping meant to provide developers with an
improved understanding of a COTS component’s behavior
within a system. We have created an implementation of this
methodology for Java applications. In the future we look
forward to improving and extending our tool and
methodology and applying it to real world applications.

8. ACKNOWLEDGMENTS

 We would like to thank Dr. Timothy Tsai, Michael Schatz,
Richard Mills, Ryan Colyer, Richard Leslie, and Glenn
Buckholz for the work they did on the research project
described in this paper. We also thank Dr. Anup Ghosh for
providing comments and feedback on this paper as it was
being written. The work presented in this paper was funded
by Army Research Labs under contract DAAD17-99-C-0052.

RF 2002RM-037: page 7 RF

REFERENCES

1. C. Braun, “A lifecyle process for the effective reuse of

commercial-off-the-shelf (COTS) Software,” Proceedings of the fifth
Symposium on Software Reusability, 1999.

2. M. Dahm. “Byte code engineering.” JIT, 1999.
3. S. Edwards, B. Weide, J. Hollingsworth, “A framework for

detecting interface violations in component-based software,” IEEE Computer
Society Proceedings 5th International Conference on Software Reuse
Victoria, Canada, Jun. 1998.

4. D. Flannagan, Java in a Nutshell, 1999; O’Reilley and
Associates, Inc.

5. W. M. Gentleman, “Effective use of COTS (commercial-off-
the-shelf) software components in long lived systems,” Proceedings of the
19th International Conference on Software Engineering, 1997.

6. A. K. Ghosh, J. Voas, “Inoculating software for survivability,”
Communications of the ACM, Jul. 1999, 42, 7.

7. J.M. Haddox, G. M. Kapfhammer, C.C. Michael, M. A.
Schatz, “Testing commercial-off-the-shelf components with software
wrappers,” Proceedings of the 18th International Conference and Exposition
on Testing Computer Software, 2001.

8. G. M. Kapfhammer, C.C. Michael, J.M. Haddox, and R.A.
Colyer, “Identifying and understanding problematic COTS components,”
Proceedings of the International Software Assurance Certification
Conference, 2000.

 9. J.C. Knight, R. W. Lubinsky, J. McHugh, and K.J. Sullivan,
“Architectural approaches to information survivability,” Technical Report”
CS-97-27, University of Virginia, Sept. 1997.

10. D. Mandrioli, B. Meyer, Advances in Object-Oriented
Software Engineering; 1992; Prentice Hall.

11. D. Rosenblum, “Toward a method of programming with
assertions,” Proceedings of the 11th International Conference on Software
Engineering, 1992.

12. B. Vennners, Inside the Java 2 Virtual Machine,1999;
McGraw-Hill.

13. M. Vigder, J. Dean, “An architectural approach to building
systems from COTS software components,” Technical Report 40221,
National Research Council, 1997.

14. J. Voas, G. McGraw, Software Fault Injection: Inoculating
Programs Against Error, 1998; John Wiley and Sons.

15. J. Voas, K. Miller, “Putting assertions in their place,”
Proceedings of the International, Symposium on Software Reliability
Engineering, November 6-9, 1994.

16. J. Voas, J. Payne, R. Mills, J. McManus, “Software testability:
An experiment in measuring simulation reusability,” Proceedings of ACM
Sigsoft, Seattle, WA., April 29-30, 1995.

BIOGRAPHIES

Jennifer M. Haddox
Cigital Labs
21351 Ridgetop Circle, Suite 400
Dulles, VA 20166 USA

Internet (e-mail): jhaddox@cigital.com

 Ms. Jennifer M. Haddox is a Research Associate at Cigital Labs. In this
position, Ms. Haddox has served as the technical lead of the Component
Reverification project, sponsored by Army Research Labs. In this role, she
oversaw the design and implementation of a system that generates wrappers
for Java classes using runtime bytecode instrumentation. Prior to joining
Cigital full-time, she completed two internships with the company. During
her time at Cigital, Ms. Haddox has had the opportunity to gain experience
on such topics as fault injection, data collection, assertions, bytecode
instrumentation, and object-oriented analysis and design. She has also co-
authored several research papers and proposals. Ms. Haddox graduated
summa cum laude from Allegheny College in May 2000 with a B.S. in
Computer Science.

Gregory M. Kapfhammer
Allegheny College
Box Q 520 North Main St.
Meadville, PA 16335 USA

Internet (e-mail): gkapfham@allegheny.edu

 Mr. Gregory M. Kapfhammer is an Instructor in the Department of
Computer Science at Allegheny College. He is responsible for the
development and teaching of the classes in the Department's new Applied
Computer Science major. Mr. Kapfhammer focuses on the teaching of
advanced undergraduate courses in the fields of software engineering,
software testing, computer security, and distributed systems. Presently,
Gregory is also a graduate student in the Computer Science Department at
the University of Pittsburgh. Mr. Kapfhammer's research interests include
software component wrapping, efficient regression testing, and the testing
and analysis of distributed systems. Mr. Kapfhammer is involved in the
development of several research prototypes that either utilize or extend the
Java programming language and the Jini network technology. During past
employment, Gregory was a Research Associate at Cigital Research Labs.

Christoph C. Michael
Cigital Labs
21351 Ridgetop Circle, Suite 400
Dulles, VA 20166 USA

Internet (e-mail): ccmich@cigital.com

 Dr. Christoph Michael is a Senior Research Scientist at Cigital Labs. As a
graduate student, he designed and implemented the fault-injection analysis
algorithms used in Cigital's commercial product, the WhiteBox Software
Analysis Toolkit. Dr. Michael has authored or co-authored 23 publications
on software testing, test-data generation and intrusion detection in
information systems. He has served as principal investigator on software
assurance grants from NIST's Advanced Technology Program and the Army
Research Labs, as well as software security grants from DARPA. His current
research interests include information system intrusion detection, software
test data generation, and dynamic software behavior modeling. A member of
IEEE and INNS, Dr. Michael received a B.A. in Physics from Carleton
College and an M.Sc. and Ph.D. in Computer Science from The College of
William and Mary.

