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SUMMARY  & CONCLUSIONS 

    
   In this paper we present an approach to mitigating software 
risk by understanding and testing third party, or commercial-
off-the-shelf  (COTS), software components. Our approach, 
based on the notion of software wrapping, gives system 
integrators an improved understanding of how a COTS 
component behaves within a particular system.   Our 
approach to wrapping allows the data flowing into and out of 
the component at the public interface level to be intercepted. 
Using our wrapping approach, developers can apply testing 
techniques such as fault injection, data collection and 
assertion checking to components whose source code is 
unavailable.   
   We have created a methodology for using software 
wrapping in conjunction with data collection, fault injection, 
and assertion checking to test the interaction between a 
component and the rest of the application. The methodology 
seeks to identify locations in the program where the system’s 
interaction with COTS components could be problematic.  
Furthermore, we have developed a prototype that implements 
our methodology for Java applications. The goal of this 
process is to allow the developers to identify scenarios where 
the interaction between COTS software and the system could 
result in system failure.  We believe that the technology we 
have developed is an important step towards easing the 
process of using COTS components in the building and 
maintenance of software systems. 

 
1. INTRODUCTION 

    
   The use of commercial-off-the-shelf (COTS) software 
components has become increasingly prevalent in recent 
years. COTS components usage, however, has resulted in a 
new set of problems that are not present when large systems 
are built and maintained using custom-built software.  
Because a COTS component is not specifically created for the 
application into which it is integrated, it may not meet all of 
the application's requirements. Furthermore, the source code 
for a COTS component is rarely made available to the buyer. 

Even if source code were available, determining how a COTS 
component will behave once it is integrated into a software 
system can still be difficult indeed (Ref. 9). 
   In order to address these problems, we have created a 
methodology and a tool meant to aid developers when they 
attempt to integrate a COTS component into their 
applications. Our approach, based on the notion of software 
wrapping, focuses on helping system integrators gain an 
improved understanding of how a COTS component interacts 
with the rest of the system into which it is integrated.  A key 
goal is to give system integrators a strategy for dealing with 
COTS components without becoming any more dependent on 
the vendor of the component than necessary.  
   The remainder of this paper is organized as follows. Section 
2 discusses some issues regarding COTS component usage. 
Section 3 clarifies the motivation of our research and explains 
some of the goals it has intended to fulfill.  Section 4 provides 
a high-level overview of software wrapping as well as a 
description of how it can be used in conjunction with other 
technologies to deal with some of the problems presented by 
COTS components.  Section 5 describes our implementation 
of software wrapping.  Section 6 deals with ideas for future 
work. 

 
2. COTS COMPONENT OVERVIEW 

    
   The use of third party software components, such as 
commercial-off-the-shelf products, has become more and 
more common in the building and maintenance of large 
software systems. Corporate downsizing and decreased 
government budgets, as well as the spiraling costs of building 
and maintaining large software systems, have necessitated the 
reuse of existing software components  (Ref. 16). In addition, 
reusing existing software can potentially reduce the time-to-
market. Finally, another important issue to consider is that, 
simply put, programmers are expensive. Why pay an entire 
team of developers to create a component from the ground 
up, when it is cheaper to simply pay a few developers to 
integrate a pre-existing component into a new application? 
For reasons such as these, very few large-scale software 
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systems are built from scratch. Commercial-off-the-shelf 
(COTS) components, legacy software, and custom-built 
components comprise today's large software systems (Ref. 6).  
   COTS components are defined by Vigder and Dean as 
“components which are bought from a third-party vendor and 
integrated into a system” (Ref. 13). However, according to 
Ref. 5, a more detailed and expanded view of COTS 
components should be taken. A COTS component could be as 
“small” as a routine that computes the square root of a 
number or as “large” as an entire library of functions. The 
important point is that a COTS component already exists and 
was created by people outside of the software development 
organization that will actually use it (Ref. 5).  
   Though employing COTS components in the building and 
maintenance of a large system can provide some benefits, 
COTS component usage presents some unique problems as 
given by Ref 1 and Ref. 13: 
1.  COTS component source code is often unavailable; thus, 
the component must be analyzed and tested as a “black box.”   
2.  Updates and evolution of a COTS component are provided 
by the vendor. New functionality of an updated component 
could be detrimental to specific applications that use it. In 
fact, functionality in the original component could also be 
problematic. 
3.  The vendor often fails to provide a correct or complete 
description of the COTS component's behavior.  This can 
result in the buyer of the component having to guess how the 
component is meant to be used or how it is supposed to 
behave.  Worse yet, the buyer could end up using the 
component in a manner the vendor did not intend. 
Unanticipated uses could compromise the reliability of both 
the COTS component and the application into which it is 
integrated. 
4.  Maintenance can become an issue because the vendor may 
not correct defects or add enhancements as the buyer needs 
them.  Developers in the organization that purchased the 
component may be forced to make modifications themselves, 
which can be quite difficult if the component’s source code is 
unavailable or if the component’s specification is poor. 
   Clearly, the creation or maintenance of systems that use 
COTS components is by no means a trivial endeavor. On the 
contrary, integrating COTS components into an application is 
prone to error, can require a significant amount of coding, 
and can be problematic to test properly (Ref. 13).   

 
3. MOTIVATION AND FOCUS OF THIS RESEARCH 

    
   Due to financial and time-to-market considerations, 
software development organizations have become 
increasingly reliant on software provided by third parties for 
functionality that is needed for the creation and maintenance 
of applications. The goal of our research was to create a tool 
and methodology that would return a greater measure of 
control to organizations using component-based systems. In 
creating our software wrapping technology, we address the 
following issues: 
1. Since source code is often not available for a COTS 
component, our approach can be applied to a component 
regardless of whether the buyer has source code for the 

component. In short, our approach is not coupled to source 
code at all. 
2. Though cooperation from the vendor is desirable, our 
approach can be applied regardless of the vendor's degree of 
involvement following the purchase of the component.  
   These issues provided a focus for the direction of our work. 
By keeping them in mind we developed the approach that is 
described in the next section. 
 
4. USING SOFTWARE WRAPPING TO ADDRESS COTS 

CHALLENGES 
 
   System developers cannot depend on the vendor of the 
COTS component to ensure that the purchased component 
will behave properly in the system in question. Hence it is up 
to the system designers to ensure that the COTS component 
will not adversely affect the behavior of the system in which 
it will be used.  In this section we present our version of 
software wrapping as well as a method for using it that will 
allow developers to mitigate COTS component risk. 

 
4.1 High-level Overview of Our Software Wrapping 
Approach 
   The approach that we have researched and developed, 
which is based on the concept of software wrapping, can aid 
developers in their efforts to test and verify COTS 
components. Conceptually, this approach requires an 
additional layer of software, called a wrapper, to encase the 
COTS component.  As shown in Figure 1, the wrapper is 
responsible for intercepting any input that the system might 
send to the component or output that the component would 
send back to the system. In the context of this research 
project, we define input and output to mean the information 
being given to and returned from the component at the public 
interface level. The hope is to isolate the COTS component 
during the testing process in order to understand whether or 
not it is interacting with the rest of the system as expected. 
   Once access to the component's input and output is gained, 
a variety of testing operations can be performed to provide an 
improved understanding of the component's interaction with 
the rest of the system. For example, the wrapper can be 
hooked up to a mechanism that simply monitors, records, and 
stores the input and output of the component for observation. 
This can be particularly helpful when the system is comprised 
of multiple COTS components. Consider the situation where 
one COTS component's output becomes another COTS 
component's input and source code is not available for either 
component. If both components are encased in wrappers, then 
the person testing the system gets a glimpse as to what is 
occurring when those two components interact.   
   In general, the user of a system that implements the 
wrapping approach can decide which testing techniques to 
use. For the purposes of our research, we focus on applying 
the testing techniques of fault injection, data collection and 
assertion checking to the input and output of a COTS 
component via wrapping. By fault injection (Ref. 14) we 
mean corrupting the data that is being passed between 
components to present the system with scenarios not found in 
typical testing. Data collection simply refers to exporting 
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various internal data states of the system to a file, database, 
etc. for later observation (as described in the example in the 
previous paragraph). Assertions (Refs. 10, 11, 15) are rules 
for system behavior defined by the developer.  In the context 
of this paper, these rules specify acceptable behavior at 
component interfaces. These rules are integrated into the 
application and checked at runtime. If a rule is violated, then 
some sort of error handling code executes to handle the 
situation, or at the very least, notification is given that an 
assertion has been violated. 
 

 
 
 
 
 
 
 
 

Figure 1: Conceptual View of a Wrapper 
 

4.2 A Method for Applying Software Wrapping 
   Though it would be ideal to be able to gain a complete 
understanding of the internal implementation of an individual 
COTS component, it is still of value to learn about the data 
the COTS component will interchange with the buyer's 
system. Thus, understanding the public interface of the 
component and what the rest of the system expects when 
interacting with that interface is of  benefit. This process can 
begin by the development organization establishing 
requirements for the system's interaction with the new 
component. Those building the system should have an idea of 
what types of inputs their system will provide to the COTS 
components and what types of information the system can 
expect to receive back from the component. Armed with this 
knowledge, the system developers can now begin to utilize 
the concept of wrapping. For it is the wrapping technique we 
have just described that will allow our methodology to be 
applied to a COTS-based system (or more generally, any 
system consisting of some components whose source code is 
not available). 
   The goal of this process is to allow the developers to 
identify scenarios where the interaction between COTS 
software and the system could result in system failure. The 
first step developers must take is defining assertions to 
govern how the COTS components in question should 
interact with the application of which they are a part. The 
application is then tested with the assertions in place. During 
these executions fault injection is applied at component 
interfaces in an attempt to determine under what situations 
the system  (and the individual COTS components) can fail.  
   Specifically, we can use fault injection to supplement the 
input values that the COTS components would receive from 
the system.  Using fault injection to perturb the components’ 
“normal” inputs can allow for observation of how these 
components react to inputs not usually encountered during 
testing. In this case we are trying to determine which kinds of 
inputs make these components fail. We can then begin to 
refine the assertions that define acceptable input to the 

components based on the reaction of the components to 
perturbed input.  
   By perturbing the input, we can also see when the 
assertions that define the COTS components’ acceptable 
output are violated. If certain types of input always result in 
such a violation, then we can further strengthen the assertions 
defining the input based on this information. The goal of this 
process it to identify scenarios that would make the COTS 
components crash, and then account for those situations in the 
assertions. 
   Fault injection can also be applied to the COTS 
components’ output to determine how the rest of the system 
will react to data produced by these components. Once 
outputs that result in failure are identified, the assertions 
defining the components’ output can be refined as well.  
   When an assertion in the system is violated by fault 
injection, or some bug existing in the system causes it to fail, 
data collection comes into play. Data collection can be used 
to export state information at locations in the code where 
fault injection is applied. Also, of use is collecting data where 
assertions fail. The developers can of course specify that data 
collection occur at specific locations where they would like 
more information about the internal state of the system. This 
can provide the developer with helpful information if the 
system fails on a particular test run. As problems with the 
code are discovered through this testing process, the tester 
may want to modify the application (if possible) to account 
for these problems.  The methodology that we just described 
appears in Figure 2. 
   Consider the following example to clarify this discussion. 
Assume a group of developers has a component X that is to 
be integrated into their system.  For a particular operation in 
X that takes an integer i as input , the developers create an 
assertion specifying that whenever the system invokes this 
operation, i must be greater than zero. The developers then 
specify that data collection be performed whenever this 
particular operation in X is invoked. When the developers test 
the entire system and apply fault injection to i, they may 
notice that X does indeed cause a system failure when i is less 
than zero. They may also note that X causes a failure when i 
is assigned values greater than one thousand. Thus, they may 
want to redefine their assertion to state that i must be greater 
than zero and less than one thousand.                                                           
   By creating assertions and applying fault injection, and then 
studying the additional output of the program provided via 
data collection, the developers can gain an improved 
understanding of how the COTS components are interacting 
with the application. They can then refine their assertions to 
account for potential failure situations they discovered by 
stepping through the process we have discussed. The end goal 
is to create assertions that will account for as many situations 
as possible that can result in system failure. 
   Once these potential problem scenarios are discovered and 
assertions are created to account for them, some action must 
be taken for the case of assertion failure.  With our current 
implementation of the methodology, the only option is for the 
developers to modify their own code to account for problems 
that could result from the COTS software being integrated 
into the system. In some cases this is appropriate. A COTS 
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component could very well be the source of problems 
because some custom built component in the system may be 
using it improperly. Thus, the custom component should be 
modified in this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

Figure 2: Overview of Methodology 
 
   It is certainly possible, however, that the COTS component 
itself is the problem. In this case, it would be ideal for the 
developers to have some method of modifying that 
component’s behavior. As stated, the wrapping technology 
we have developed does not allow functionality to be 
modified in a component whose source code is not available; 
it only allows input and output data to be intercepted. Thus, 
the developers must adapt their system to account for 
problems caused by COTS software. In Section 6 we describe 
an extension of our current prototype that would allow for 
COTS functionality to be modified.  First though, we give a 
description of the tool that we built. 

 
5. IMPLEMENTING SOFTWARE WRAPPING 

 
   Now that we have explained the high-level overview of our 
approach and how it can be applied to a COTS-based system, 
we shall describe the underlying technology that makes it 
possible. This section will provide a brief listing of the 
requirements for our tool, a description of our 
implementation, and a summary of the benefits and 
drawbacks of this implementation. 

 
5.1 Requirements 
   Several groups, such as Ref. 3 and Ref. 9, have already 
focused on some variation of the concept of wrapping. Our 
research has specifically focused on devising a method to 
apply wrapping to object-oriented components whose source 
code may not be available. We initially chose Java as our 

candidate language due to its increasing popularity. From this 
point on, we shall define a component as a Java class, and the 
two terms will be used interchangeably. 

When performing the analysis to devise a solution 
for wrapping object-oriented components, we kept the 
following general requirements for a wrapping prototype in 
mind: 
1.  Wrapping a component must not change the core 
functionality of any program that utilizes the wrapped 
component. While a wrapping approach might introduce a 
slight execution overhead, it should not destroy the 
functionality of systems that previously executed in a correct 
fashion 
2.  Our implementation must allow the methodology 
described in Section 4 to be applied to Java applications. 
3.  The user of a wrapping tool should be able to turn the 
wrapping mechanism on and off at system start-up time.  For 
example, a system integrator should be able to add a 
“wrapper flag” to the command line statement that starts an 
application in order to indicate that wrappers should become 
active. 
4.  The wrapper must be able to handle any operation that is 
advertised by a Java interface and provide the ability to 
intercept information at method entries and method exits 
(whether it is an expected or unexpected exit), thus allowing 
input and output data to be intercepted as described in Section 
4. 

 
5.2 Implementation 
   We have taken the general notion of software wrapping and 
built a prototype that allows this approach to be applied to 
object-oriented components written in Java.  Before 
describing this approach, we shall provide some basic 
information about Java. All programs written in the Java 
programming language are converted into bytecode by the 
Java compiler. The bytecode is then interpreted and executed 
by the Java Virtual Machine, which is a sort of  “abstract 
computer” that can be implemented in the hardware but 
normally is implemented in the form of a software program 
(Ref. 4).   Thus, bytecode is basically the portable assembly 
language of the Java Virtual Machine (Ref. 4). 
   The approach that we employed ended up being somewhat 
unconventional, in that it goes against the conceptual view of 
a wrapper given in Section Four. The solution is specific to 
Java and relies on bytecode instrumentation. The original 
component’s bytecode is instrumented such that the input and 
output of a method can be captured and monitored. 
   Using our bytecode instrumentation technology, one can 
access and modify the bytecode of a Java class that is to be 
wrapped.  More specifically, one can intercept and capture 
the input and output of methods of the class to be wrapped 
and transfer that information to some subsystem that would 
perform testing operations on the captured input/output data.  
Our technology uses a third party software package called 
JavaClass (Ref. 2) to aid in the bytecode instrumentation 
process.  
   Additionally, we have implemented the testing techniques 
described in Section Four.  We have created fault injection, 
data collection and assertion checking subsystems that can be 
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used in conjunction with our wrapping tool. More 
information on these subsystems and how they are used in 
conjunction with our implementation of wrapping can be 
found in Ref. 7. 
   Note the fact that all instrumentation of a class to be 
wrapped is performed at runtime.  This is accomplished via a 
custom class loader, which intercepts the request to load a 
class to be wrapped. All classes are loaded from disk into the 
Java Virtual Machine at runtime by a class loader that is part 
of the Java Development Kit (JDK) (Ref. 12). However, it is 
possible to create one’s own class loader that can be used in 
place of the one that comes with the JDK. We took this 
approach in order to allow our tool to instrument the bytecode 
of a class at runtime.  Before a class to be wrapped is loaded 
into the Java Virtual Machine, our bytecode instrumentation 
subsystem gains access to it and modifies it. Then, the 
instrumented version of the class is loaded into the Java 
Virtual Machine. Once the execution of the application 
completes, no trace of the modifications is left behind. The 
original class still resides on disk. 
   The user creates an Instrumentation Configuration File 
(ICF) in which the classes to be wrapped are specified. One 
can also use an ICF to specify that only certain methods in a 
class be wrapped (i.e., certain methods are instrumented such 
that their input/output is intercepted). This file then becomes 
input to our system, and based on what is specified in the file, 
certain classes are intercepted by our custom class loader, 
instrumented, and then loaded into the Java Virtual Machine 
by our custom class loader.  The rest of the system never has 
knowledge that wrapping occurred in the first place. See 
Figure 3 for a high level diagram of the wrapping subsystem. 
 
                                                                                 
 
 
                                 
                        
 
 
 
 
 
 
 
 
 
 

Figure 3: High Level Overview of Wrapping System 
 
5.3 Benefits to Our Approach 
   There are several important advantages to our approach that 
are worth noting.  First of all, the approach is in no way 
dependent on access to the source code of the component 
being wrapped. Further, it is not dependent upon support of 
the vendor of the component. In keeping with our 
requirements, the wrapping mechanism can be turned “on” or 
“off” at the time the system in question is to be executed and 
does not corrupt the normal behavior of that system.  
Additionally, our approach allows testing techniques such as 

fault injection and assertion checking to easily be applied to a 
component whose source code is unavailable.  Thus, our 
implementation supports the methodology described in 
Section 4. Finally, a user can easily create his or her own 
subsystem that would perform some testing operation on the 
captured input and output. Our system was designed such that 
a new subsystem could easily be used in conjunction with our 
wrapping technology.  
 
5.4 Drawbacks 
   Though this approach is effective, it does suffer from some 
drawbacks. A potential limitation with this approach has to 
do with the fact that all methods in Java have a 64KB limit on 
their size. Since we are increasing the size of a method with 
this approach as we are adding  to its bytecode, it could be 
possible to exceed this limit, though it is not likely.  
Additionally, one cannot use direct bytecode instrumentation 
to wrap native methods (functions written in some other 
language, such as C, that can be invoked by a Java program) 
since native methods have no bytecode. Thus, our solution 
does not completely fulfill the requirement that a wrapping 
system should be able to handle any operation advertised by a 
Java interface. Finally, our actual implementation is coupled 
to Java as it relies on bytecode instrumentation. 
 

6. FUTURE WORK 
 
6.1 Continuing Evaluation 
   In the future we would like the opportunity to test our 
prototype and methodology on a real world Java application 
that was partially constructed from third party components. 
We did complete some preliminary testing on our tool by 
using a testbed system that we constructed for this project.  
When applying our tool to the testbed system, the tool always 
produced “wrapped” classes capable of running within the 
Java Virtual Machine and interacting with the other classes 
without causing a disruption in the expected behavior of the 
system.  Using the wrapping system in conjunction with the 
data collection, fault injection and assertion checking 
subsystem, we were able to uncover errors in the testbed 
system (Ref. 7). Using our tool on a real world Java 
application, however, would provide a much more rigorous 
test of the effectiveness of our approach.  
 
6.2 Extending the Technology 
   We eventually hope to use the research we conducted and 
the prototype we developed to create a methodology, loosely 
based on the methodology presented in Ref. 8, and a tool 
whose primary purpose is the disabling or modification of 
problematic functionality in COTS components. At a high 
level, our methodology would consist of three steps: 
1.  Learn the behavior of the component within the system. 
2.  Modify the appropriate portion of a component with 
problematic functionality. 
3.  Test the modified component in the system. 
   The user of this tool will be given several methods of 
learning about the behavior of the component in question. 
The user will be able to apply our fault injection, data 
collection, and assertion checking techniques,  all of which 
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we will expand and improve for the construction of this tool. 
Additionally, techniques for machine-learning based 
inference of component behavior will be developed.  We will 
also create a unit-testing framework that can be used to test 
the component in isolation.  We will then build on our 
bytecode instrumentation technology in order to allow the 
user a means of modifying a component’s functionality.  The 
user will then be able to utilize our fault injection and 
assertion checking systems to test the modified component to 
determine if the changes made are having a negative impact 
on the system’s behavior.  
    The unit-testing framework would be used to perform 
regression testing on the component.  Before the component 
is modified, our data collection system can be used to record 
and store inputs to the component during execution of the 
system. The unit-testing framework will be capable of 
feeding these stored inputs back into the component. The goal 
will be to determine if the behavior of the modified 
component is different from that of the original.   
   We believe that the creation of such a tool could further aid 
those using COTS components in the building and 
maintenance of their applications. 

 
7. CONCLUSIONS 

 
   The increasing use of third-party COTS components can in 
theory lead to reduced costs and faster development cycles, 
but these advantages can come at a steep price. With their 
applications dependent on the behavior of components from 
third parties, developers and integrators have suffered a loss 
of control. Thus, our goal with this project has been to help 
developers and integrators regain some control of their 
COTS-based systems.  
   With this research project, we have developed an 
innovative approach to testing object-oriented COTS 
components.  We have created  a methodology based on 
software wrapping meant to provide developers with an 
improved understanding of a COTS component’s behavior 
within a system. We have created an implementation of this 
methodology for Java applications. In the future we look 
forward to improving and extending our tool and 
methodology and applying it to real world applications. 
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