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Abstract

Many applications rely upon a tuple space within dis-
tributed system middleware to provide loosely coupled
communication and service coordination. This paper de-
scribes an approach for measuring the throughput and
response time of a tuple space when it handles concur-
rent local space interactions. Furthermore, it discusses
a technique that populates a tuple space with tuples be-
fore the execution of a benchmark in order to age the
tuple space and provide a worst-case measurement of
space performance. We apply the tuple space bench-
marking and aging methods to the measurement of the
performance of a JavaSpace, a current example of a tuple
space that integrates with the Jini network technology.
The experiment results indicate that: (i) the JavaSpace
exhibits limited scalability as the number of concurrent
interactions from local space clients increases, (ii) the ag-
ing technique can operate with acceptable time overhead,
and (iii) the aging technique does ensure that the results
from benchmarking capture the worst-case performance
of a tuple space.

1 Introduction

A tuple space is a shared memory component of mid-
dleware that provides communication and coordination
facilities to the services in a distributed system. Tuple
spaces have been used to implement a wide variety of
applications, including parallel UNIX utilities [6], paral-
lel genetic algorithms (GAs) [27], distributed regression
testing frameworks [12], large-scale mobile agent systems
[17], “lifestream” information management applications
[3], and scientific computations that support both astro-
physics [16] and bioinformatics [22, 23] research. Even
though tuple spaces have been used to implement a wide
range of applications, there is a relative dearth of bench-
marking frameworks that focus on the measurement of
tuple space performance. This paper describes an ap-
proach to tuple space performance evaluation that sup-
ports the creation of concurrent local clients and the use
of aging to populate the space with tuples before the ex-
ecution of a benchmark. This paper also provides the
results from experiments that characterize the perfor-
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mance of a specific type of tuple space and evaluate the
efficiency and effectiveness of the proposed aging tech-
nique.

This paper applies the benchmarking framework to the
measurement of the performance of a JavaSpace, an ex-
ample of tuple space that integrates into the Jini network
technology [7]. A JavaSpace can interact with clients
that are either resident on the same network node or lo-
cated on a remote node. In the context of applications
like parallel GAs, a client’s interaction with a JavaSpace
frequently occurs when one or more local clients exe-
cute on the same machine as the space itself [27]. Re-
cent research by Noble and Zlateva has also highlighted
some concerns about the performance characteristics of
a JavaSpace [16]. Furthermore, the experiences reported
by Zorman et al. indicate that the performance of a Java-
Space decreases significantly when the number of concur-
rent space clients exceeds a certain threshold [27]. Thus,
there is a need for an approach to determine the number
of local clients that will cause tuple space throughput to
“knee” as client response times continue to increase. To
this end, this paper introduces a benchmarking frame-
work that can measure tuple space throughput and re-
sponse time when a pre-defined number of space clients
simultaneously perform the same benchmark.

Due to the fact that the performance of an unused stor-
age system differs from one that has been active, aging
techniques have been constructed in order to make file
system benchmarks more realistic [21]. A tuple space
benchmarking technique that measures the performance
of an empty space will not provide an accurate char-
acterization of worst-case tuple space performance. This
paper establishes and evaluates a novel approach to tuple
space aging that yields worst-case performance measure-
ments by populating a tuple space with tuples before a
benchmark is executed. The presented aging technique
uses automatically generated workloads to place differ-
ent types of tuples into the space. During the bench-
marking phase that removes tuples from the space, the
space’s template matching algorithm must examine the
additional tuples that were placed within the space by
the aging mechanism. Thus, aging supports the charac-
terization of the worst-case performance of a tuple space.



This paper also includes the description of a framework
for tuple space benchmarking and aging, collectively
referred to as the Space bEnchmarking and TesTing
moduLEs (SETTLE), that currently supports the execu-
tion of micro benchmarks to measure the throughput and
response time of a JavaSpace under a variety of differ-
ent configurations. This paper describes the results from
the use of SETTLE to conduct experiments that take the
first step towards the measurement of the performance of
a noteworthy component in distributed system middle-
ware. In summary, the important contributions of this
paper are as follows:

1. A benchmarking framework to support the col-
lection of response time and throughput measure-
ments for a tuple space that handles concurrent
local client interactions.

2. The introduction of a tuple space aging technique
that enables tuple space performance benchmarks
to capture worst-case performance.

3. A detailed empirical study that investigates the
following phenomena: (i) the throughput and re-
sponse time characteristics of a JavaSpace, (ii) the
overhead associated with the tuple space aging
technique, and (iii) the impact that tuple space
aging has on the benchmark results.

2 JavaSpaces Background

This paper focuses on the performance analysis of an
implementation of the tuple space concept that is known
as a JavaSpace. However, Section 5 explains that the
benchmarking and aging techniques presented by this
paper are also applicable to other examples of the tuple
space concept. JavaSpaces rely upon the substrate pro-
vided by the Java programming language and the Jini
network technology by taking the form of a Jini ser-
vice that uses Java remote method invocation (RMI) and
Java serialization. JavaSpaces were designed to support
loosely coupled communication with an interface that is
both simple and expressive. A few of the simple oper-
ations provided by the JavaSpace include read, write,
and take [7] .

Even though the JavaSpace also provides the
non-blocking operations of readIfExists and
takeIfExists, this paper focuses on the blocking
JavaSpace operations. A read returns an object from
the JavaSpace that matches the template provided by
the requesting client and a take does the same but also
removes the object from the JavaSpace. A write simply
places an object into the JavaSpace [7]. A JavaSpace
can only store Java objects that implement the Entry
marker interface. In order to support template match-
ing, all of the fields within an Entry must be subclasses
of java.lang.Object that are publicly visible. Finally,
the JavaSpace can be configured to operate in either a
transient or a persistent mode. A transient JavaSpace

ShutdownTakeStartup Write PauseAging Aging Cleanup

Figure 1: The Phases of a SETTLE Benchmark.

stores all of its Entry objects in memory while a
persistent JavaSpace can utilize secondary storage to
maintain state across restarts.

3 The SETTLE Approach

3.1 Overview
SETTLE is an extension of the JavaSpaces benchmark-
ing tool created by Noble and Zlateva [16]. One of the
key contributions of SETTLE is the inclusion of facili-
ties to create q local space clients that each execute the
specified benchmark. The space clients are configured
to pause for a random amount of time during two dif-
ferent phases of the benchmark lifecycle. The random
pause, denoted Tdelay, is defined in Equation (1). In
this equation, Trandom is a randomly generated time pe-
riod, V is a uniformly distributed variation, Tmin is the
user specified minimum time delay, Trandom ∈ [0.0, 1.0],
and Tdelay ∈ [Tmin, Tmin + V ].

Tdelay = (Trandom × V ) + Tmin (1)

Figure 1 describes the phases that exist within a SET-
TLE benchmark.1 The aging technique, as described in
Section 3.4, can be used in addition to the standard five
phase benchmark. The phases whose names are bold
and italic involve the use of Equation (1) in order to in-
troduce a pause into the execution of the space client.
In the startup phase, each of the SETTLE space clients
is configured to wait for Tdelay milliseconds before at-
tempting to contact the JavaSpace. Upon space contact,
each client executes three separate phases: the write
phase, the pause phase, and the take phase. Finally,
the space client enters the shutdown phase. For a spec-
ified benchmark, each client uses the same type of Java
Entry object to write into the JavaSpace, waits for a
random period of time, and then attempts to take the
same Entry objects out of the space. If aging is not
used to seed the space with Entry objects, a benchmark
always leaves the space in the state that existed before
the benchmark was executed.2 If tuple space aging is
used, an additional aging cleanup phase is required to
remove the Entry objects that were initially placed into
the space during aging.

1SETTLE also supports other orderings of the phases
within a benchmark. For example, the pause phase could
be removed or the write and take phases could occur in the
opposite order for some of the space clients. However, the
empirical results examined in Section 6 focus on the phase
ordering depicted in Figure 1.

2This condition holds only if a benchmark always performs
a take instead of a read. Thus, this paper does not focus on
the benchmarking of the read operation.
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Figure 2: Classification Scheme for Tuple Space Benchmarking Techniques.

Figure 2 presents a classification scheme for tuple space
benchmarking and shows the features that are supported
by the SETTLE framework. The arrows in this scheme
indicate that a benchmark configuration for a tuple space
requires the selection of a tuple space and a benchmark.
The tuple space must be configured by choosing a client
location and a storage mechanism. The configuration
of the benchmark requires the choice of a benchmark
type and one or more performance measurements. Fi-
nally, a benchmark can be executed with or without the
aging technique. Any underlined characteristic in Fig-
ure 2 (e.g., “Local” and “Transient”) is described and
evaluated in this paper. For example, the experiments
discussed in Section 4 and Section 6 use micro bench-
marks that perform local space interactions to measure
the throughput and response time characteristics of a
space. Furthermore, these experiments are conducted
on aged and non-aged transient JavaSpaces.

This paper focuses on benchmarks that evaluate tuple
space performance in a controlled environment in order
to establish accurate and repeatable measurements of
throughput and response time. To this end, this paper
does not address tuple space benchmarking with: (i) re-
mote clients, (ii) persistent tuple spaces, and (iii) macro,
combined, and application-specific benchmarks. Yet, it
is important to note that SETTLE does facilitate the
benchmarking of tuple spaces when the client is remote
and when the space uses a persistent storage mechanism.
Finally, SETTLE’s extensible design also supports the
integration of other types of benchmarks.

This paper focuses on local clients rather than remote
clients for two important reasons. First, benchmark-
ing tuple spaces with local clients mirrors the behav-
ior of real-world applications such as the mobile agents
described by Picco et al. [17] and the parallel genetic
algorithms created by Zorman et al. [27]. Second, fo-
cusing on local clients provides a more accurate per-
formance estimate since the response time of a remote
client is increased by network latencies and other re-
mote communication overheads. This paper does not
specifically address the benchmarking of persistent tuple
spaces because it is expected that transient, in-memory,
tuple spaces will normally provide better performance
than persistent tuple spaces that must interact with

secondary storage.3 The use of macro, combined, and
application-specific benchmarks is not addressed in this
paper because these benchmarks often require detailed
knowledge about the application domain. In contrast,
our techniques can be used without having knowledge of
the application domain and without the existence of a
completely implemented application.

3.2 Benchmarking
Zhang and Seltzer observe that there are three main pur-
poses for benchmarking: (i) the comparison of the per-
formance of different systems, (ii) the guidance of per-
formance optimizations, and (iii) the prediction of an
application’s performance in new software and hardware
environments [26]. Furthermore, Zhang and Seltzer place
software performance benchmarks into one of four cat-
egories: (i) micro benchmarks, (ii) macro benchmarks,
(iii) combined benchmarks, and (iv) application-specific
benchmarks [26]. This paper focuses on micro bench-
marks that can serve as the first step towards realiz-
ing the stated purposes for the benchmarking of a tuple
space. Micro benchmarks focus on the analysis of certain
primitive operations that are used to create traditional
applications [26]. A micro benchmark for JavaSpaces
could measure the performance of basic space operations
like read, write, and take.

Each SETTLE benchmark places a certain type of Entry
object into the JavaSpace. The framework uses the same
technique as Noble and Zlateva in order to approximate
the size of the objects that are used in the benchmark
[16]. The NullIO benchmark places a NullEntry object
into a JavaSpace that is 356 bytes in size and the String-
IO uses a StringEntry that is 503 bytes. The ArrayIO
benchmark is configured by a user provided parameter
that controls the size of the double[] array that is placed
into the JavaSpace. For example, a DoubleArrEntry
that contains a double[] array of size 100 consumes
1031 bytes of storage. The FileIO benchmark writes
and takes a FileEntry that stores any type of binary

3However, our preliminary experiments revealed that this
assumption does not hold when the transient tuple space ex-
ceeds the physical memory of its host node. We believe that
this is due to the fact that the persistent JavaSpace is better
able to manage the use of the file system than the virtual
memory manager of the operating system.



or text file in a byte[] array. For example, when the
FileIO benchmark stores an 86 line eXtensible Markup
Language (XML) file in a byte[] array, the resulting
FileEntry is 3493 bytes in size.

3.3 Performance Metrics
The tuple space benchmarking framework supports the
measurement of: (i) the response time for each individual
client’s write and take operations, (ii) the time required
for each client to contact the JavaSpace, (iii) the overall
time used to complete all of the client interactions, (iv)
the time required to age the tuple space, and (v) the time
needed to remove the Entry objects that were placed
within the space by the aging technique. Intuitively, the
throughput of a tuple space is the number of operations
that the space can complete within a specific duration
of time. Furthermore, the response time for a specific
space client’s interaction with a tuple space is the time
interval between the client’s submission of the request
and the space’s completion of the computation required
by the request.

The definitions of the performance metrics used in this
paper adapt the notation established by Jain [11]. Equa-
tion (2) defines X(Si, O, q), the throughput of tuple
space Si during its servicing of the requests made by the
set of clients C = {C1, C2, . . . , Cq} for operation O. The
definition of X(Si, O, q) uses L(Si, O) to denote the num-
ber of completed space operations O that occurred at
space Si during the time required to execute the bench-
mark, denoted Tbench. In the context of the phases in
Figure 1, Tbench refers to the duration of the time period
needed to execute the phases within the bold vertical
lines. The actual space operation O varies with respect
to the granularity that is chosen to view the space in-
teraction. For example, O might be a single write or
take operation or some meaningful combination of the
primitive tuple space operations.

X(Si, O, q) =
L(Si, O)
Tbench

(2)

Equation (3) defines R(Si, Cj , O), the response time of
tuple space Si when it services Cj ’s request for opera-
tion O. The definition of R(Si, Cj , O) assumes that the
space’s response to the request for space operation O will
always arrive after the request is sent. The measurement
of response time uses the point at which Cj ’s interac-
tion with Si is complete. Finally, Equation (4) describes
R(Si, C, O, q), a measure of the average response time
for all of the client interactions that occur with space Si.

R(Si, Cj , O) = Tcomplete(Si, O)− Tsubmit(Si, O) (3)

R(Si, C,O, q) =

∑q
j=1 R(Si, Cj , O)

q
(4)

It is also important to measure the percentage change in
throughput and response time as the value of q changes.
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Figure 3: Template Matching.

Equation (5) defines X%(Si, O, q, q′), the percent change
in throughput as the number of clients is increased from
q to q′. Equation (6) defines the percent change in re-
sponse time, denoted R%(Si, C,O, q, q′), in an analagous
fashion. A positive value for the X%(Si, O, q, q′) metric
demonstrates a desirable increase in throughput while
a negative value shows that throughput decreased as
the number of clients increased. A positive value for
R%(Si, C, O, q, q′) shows an unwanted increase in re-
sponse time while a negative value indicates a decrease
in response time.

X%(Si, O, q, q′) =
X(Si, O, q′)−X(Si, O, q)

X(Si, O, q)
× 100 (5)

R%(Si, C, O, q, q′) =
R(Si, C,O, q′)−R(Si, C,O, q)

R(Si, C, O, q)
×100

(6)

3.4 Tuple Space Aging
It is likely that the initial state of a tuple space will
have a significant impact upon the performance results
produced by benchmarking. The most straightforward
solution to the problem of selecting an appropriate tuple
space state is to simply mandate that the benchmark al-
ways interacts with a space that is initially empty. Yet, in
the context of file systems, Smith and Seltzer have argued
that while this approach might be simple, it does not ac-
curately approximate the environment seen by users of
real applications [21]. Even though Smith and Seltzer
argue for aging in the context of file system benchmarks,
Section 6 shows that aging impacts the performance of
a tuple space.

Since it is not always possible to obtain information
about the state of a tuple space that results from the
execution of a real space-based application, this paper
investigates the use of an aging technique to populate
the tuple space with Entry objects before a benchmark
is executed. Suppose that we desire to populate tu-
ple space Si through the execution of a space workload



Parameter Value(s)
Tmin 200 ms

V 50 ms
Tdelay [200, 250] ms

# of Entry Objects {1000}
Aging Workload Size (|W |) {1000, 3000,

6000, 12000}
# of Clients (non-aged) (q) {2, 8, 14, 22}

# of Clients (aged) (q) {8, 14}
{r, t, w}-frequency {0, 0, 100}
Entry Objects {Null, String,

Array, File}

Figure 4: Experiment Parameters Used for All Benchmarks.

W = 〈w1, . . . , wu〉 with each space operation wx ∈ W
being one of the primitive tuple space operations read,
take, or write. The approach to tuple space aging must
be able to select a workload W that can effectively age a
space. Once a workload has been selected, the aging ap-
proach must introduce the result of workload execution
into Si before the execution of a benchmark.

For any approach to tuple space aging, there are two
potential techniques for the creation of W : (i) auto-
matically generated workloads and (ii) recorded/derived
workloads. This paper focuses on automatically gener-
ated workloads and their impact upon the performance
of tuple spaces because the impact of aging can be eval-
uated without relying upon prior workload studies. Yet,
it is important to note that since the aging technique
has already been implemented, the results of detailed tu-
ple space workload studies can be used to create record-
ed/derived workloads that mimic real world tuple space
usage. The automatic generation of workloads is gov-
erned by the {r, t, w}-frequency and the Entry object
selection technique.

The {r, t, w}-frequency defines the fraction of the work-
load that will be associated with the tuple space opera-
tions of read, take, and write and must adhere to the
restriction that the frequencies for each of the respec-
tive operations sums to one (i.e., r + t + w = 1). A
random {r, t, w}-frequency selects a frequency each time
the aging mechanism is executed. It is also possible to fix
the {r, t, w}-frequency to a ratio of space operations that
will be used to age the tuple space. Alternatively, an “all
write” {r, t, w}-frequency would mandate that the aging
workload only performs the write space operation (i.e.,
w = 1 and r = t = 0). It might also be useful to per-
form read and take operations during space aging if this
accurately models a real world workload or performance
measurement is focused on a tuple space implementation
that caches frequently requested Entry objects.

As noted in Section 2, the read and take operations
require an Entry template that specifies the desired

type of object. Furthermore, the write operation must
place a certain Entry object into the tuple space. To
this end, the benchmarking framework selects from
a set E of Entry objects when any space interaction
occurs. Each Entry must be associated with a selection
frequency so that all of the frequencies of the Ek ∈ E
adhere to the restriction stated in Equation (7). The
type and number of objects within E is specified by the
user of the benchmarking framework. For example, if E
is defined as the set of Entry objects used by the bench-
marks discussed in this paper, then it is evident that E =
{NullEntry, StringEntry, DoubleArrEntry, FileEntry}.

∑

Ek∈E

freq(Ek) = 1 (7)

An aging technique’s impact upon tuple space perfor-
mance will vary with respect to the space’s rules for tem-
plate matching, the implementation of the tuple space,
and the Entry objects that are placed within the space by
the aging mechanism. Since the take operation that per-
forms the template matching is a core algorithm within
a JavaSpace, this paper focuses on aging techniques that
support the characterization of the worst-case perfor-
mance of a take. For example, assume that operation
wx ∈ W is a take and Entry Ek ∈ E has been se-
lected for the template. Freeman et al. state that the
template Ek matches an Entry El within a JavaSpace
if two rules hold: (i) the Ek’s type is the same as El’s
type or Ek’s type is a supertype of El’s type and (ii)
every field within Ek matches the corresponding field
within El [7]. For rule (ii), a field fk within Ek matches
a field fl within El if fk is a “wildcard” or if the val-
ues of fk and fl are the same [7]. Many different data
structures can be used to store Entry objects inside of
the tuple space and implement these template matching
rules. The Jini 1.2.1 implementation of the JavaSpace
uses the following data structures, among many others,
to perform template matching:

1. COM.odi.util.OSHashtable

2. com.sun.jini.outrigger.SimpleEntryHolder
(an implementation of the EntryHolder interface)

3. com.sun.jini.outrigger.FastList

4. com.sun.jini.outrigger.EntryRep

5. net.jini.core.entry.Entry

Figure 3 summarizes the four steps that must be taken
to determine which Entry objects within a tuple space
match the template Ek that is provided to a take opera-
tion. 4 In step one, the JavaSpace receives a take oper-
ation for all of the Entry objects stored within the Java-
Space that match the Entry template Ek. In step two,

4This discussion uses a simplified model of the data struc-
tures used to store Entry objects and perform template
matching. Without loss of generality, the model enables this
paper to intuitively motivate the assertion that aging can sup-
port the characterization of worst-case space performance.
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Figure 5: Benchmark Execution Time for (a) NullIO, (b) StringIO, (c) ArrayIO, (d) FileIO.

the template matching technique uses an OSHashtable’s
hashing function H to determine the set of relevant types
and subtypes of Ek, denoted ER. For each specific type
Em ∈ ER, an additional instance of OSHashtable is
used in step three to identify the SimpleEntryHolder
that contains, among other data fields, a FastList of all
of the relevant EntryRep objects. Once one of the de-
sired EntryReps is identified by a search of the FastList
in step four, the Entry object can be extracted and re-
turned to the client that invoked the take. The take can
return the first Entry within the FastList that matches
the template Ek.

A tuple space aging technique can take two differ-
ent approaches to impact the performance of the tem-
plate matching algorithm that is intuitively depicted
in Figure 3. For example, assume that the tuple
space is initially populated with Entry objects that
are related in a deep inheritance hierarchy. This ini-
tial configuration could increase the number of relevant
types for a take’s template Ek, thus enlarging the set
ER, and subsequently requiring a search through the
many FastLists that are stored in all of the relevant
SimpleEntryHolders. Alternatively, suppose that the
tuple space is aged with the same type of Entry object
while varying the values of the fields within the Entry.
This could increase the number of the EntryReps that
must be searched in step four in order to identify an
Entry object in the FastList that match the template
Ek that was provided to the take operation.

As an example of the second aging technique, suppose
that a tuple space is aged with StringEntry objects that
contain the string sa, the StringIO benchmark writes
and takes StringEntry objects that contain the string
sb, and sa 6= sb. In this circumstance, the FastList
will contain EntryReps for the Entry objects with both
the strings sa and sb. When a take is executed with a
StringEntry template that wraps the string sb, all of
the StringEntry objects with the string field sa, in the
worst case, must be examined before finding an Entry
that matches a template with the string sb. This circum-
stance occurs when all of the Entry objects with string
sa are stored before all of the objects that contain the
string sb. If there are a total of na objects that contain
the string sa, the execution of the template matching al-
gorithm requires a linear search of the FastList that has
a worst-case time complexity of O(na) in the aged con-
figuration. If the tuple space is not aged and all Entry
objects in the space contain the string sb, the first Entry
in the FastList will always match Ek and this results
in a worst-case time complexity of O(1) for the template
matching algorithm.

If aging places na objects within the tuple space and na

is large, this could change the results of a benchmark.
In summary, this example intuitively demonstrates that
tuple space aging has the potential to cause the execu-
tion of the tuple space matching rules during a take to
deviate from the constant time complexity of O(1) to a
linear time complexity of O(na). In light of the simplic-



ity and potential impact of the second technique, this
paper evaluates how aging with the same Entry type
will change the throughput and response time of a tuple
space. Since aging is only useful if it does not introduce
large time overheads into the benchmarking process, this
paper also investigates the efficiency of aging by measur-
ing Tage and Tclean, the time required to perform aging
and cleaning, respectively. Equation (8) defines T%

age, the
percentage of benchmark time that is consumed by the
aging of a tuple space. In this equation and the anal-
ogous definition of T%

clean, Tbench is defined in the same
manner as Equation (2) in Section 3.3.

T%
age =

Tage

Tbench + Tage
× 100 (8)

4 Experiment Design

The empirical study described by this paper focuses on
the calculation of X(Si, O, q) and R(Si, C, O) in order to
evaluate the performance of aged and non-aged transient
JavaSpaces. This study also measured T%

age and T%
clean to

characterize the efficiency of the tuple space aging and
cleaning techniques. All of the experiments with SET-
TLE were conducted on a workstation with dual Intel
Xeon Pentium III processors, 512 MB of main memory,
and a SCSI 10,000 RPM disk subsystem. The work-
station was running GNU/Linux with a 2.4.18-14smp
kernel. The experiments used a Java 2 standard edi-
tion (J2SE) 1.4.2 compiler, a J2SE 1.4.2 virtual machine
configured to operate in HotSpot Client mode, and the
Jini 1.2.1 network technology. The Java virtual ma-
chine (JVM) was configured to use the LinuxThreads
0.10 thread library and a one-to-one mapping between
Java threads and GNU/Linux kernel threads. Through-
out the experiments, the GNU/Linux kernel was allowed
to schedule the Java processes on the two available pro-
cessors according to its internal scheduling algorithm.

We also configured the generation of the Tdelay that is
used during the startup and pause phases so that V = 50,
Tmin = 200, and thus Tdelay ∈ [200, 250]. The value
of Trandom was generated with java.util.Random’s
nextDouble method. Finally, all experiments were ex-
ecuted with each local client being responsible for writ-
ing 1000 Java Entry objects. In each experiment, we
varied the number of tuple space clients so that q ∈
{2, 8, 14, 22}. For each benchmark and each value of q,
we conducted the experiment five times in order to col-
lect throughput and response time metrics and facilitate
the computation of arithmetic means and standard de-
viations. Standard deviations are represented by error
bars whenever the bar does not obscure the experiment
results. In the bar charts of Figure 5, the diamonds at
the top of the bars indicate that the standard deviations
were insignificant.

We aged the tuple space with the type of Entry ob-
ject that is used by each of the benchmarks. For exam-
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Figure 6: Throughput Measurements.

ple, when the ArrayIO benchmark is executed, we aged
the tuple space with DoubleArrEntry objects that wrap
double[] arrays. Other Entry selection techniques that
age the tuple space with a variety of objects are also pos-
sible. However, we were interested in evaluating whether
the impact of aging correctly corresponded to the one
that was discussed in Section 3.4. Since the NullEntry
does not contain any fields that would require inspec-
tion during the execution of the template matching algo-
rithm, aging would not normally impact the performance
of the NullIO benchmark. To this end, we modified the
NullEntry object so that it contained a boolean field
called aged and then executed the aging experiments.
All of the aging experiments were conducted in three
phases: (i) the space was aged using the same Entry
type as the chosen benchmark, (ii) the benchmark was
then executed, and (iii) the space was cleaned.

Aging used automatically generated workloads with a
{r, t, w}-frequency of all writes and a workload size gov-
erned by |W | ∈ {1000, 3000, 6000, 12000}. Benchmarks
were executed as previously discussed, except that the
number of clients was restricted so that q ∈ {8, 14}. We
limited the values for q because the experiments revealed
that tuple space throughput normally exhibited a “knee”
between eight and fourteen clients. For every benchmark
and value of q and |W |, we conducted the experiment five
times in order to collect average throughput, response
time, and the aging/cleaning cost metrics. Figure 4 re-
views the experiment parameters.

5 Threats to Validity

Any empirical study of the performance of a software ap-
plication must confront certain threats to validity. Dur-
ing the analysis of a tuple space’s performance and the
impact of aging we were aware of potential threats to
validity and took steps to control the impact of these
threats. A threat to internal validity concerns fac-
tors that might have impacted the measured variables
(e.g., the throughput and response time of the aged and
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Figure 7: Scalability Measurements for (a) NullIO, (b) StringIO, (c) ArrayIO, (d) FileIO.

non-aged tuple spaces) without our knowledge. Defects
within the SETTLE framework could cause benchmarks
to be executed improperly or metrics to be calculated in-
correctly. To this end, we used the benchmarking frame-
work of Noble and Zlateva [16] to confirm that SETTLE
calculated correct throughput and response time values
when the selected benchmarks were executed with a sin-
gle client. Furthermore, we measured the wall clock time
required to complete the benchmark and ensured that
this corresponded to the time calculated by SETTLE’s
instrumentation. We also used the same workstation for
all experiments and we prevented external user logins to
this workstation throughout experimentation.

A threat to external validity would limit the gener-
alization of our approach and the experiment results.
Our empirical study exhibits threats that are similar to
other benchmarking efforts. First, this paper only fo-
cuses on the four micro benchmarks NullIO, StringIO,
ArrayIO, and FileIO and the results from these bench-
marks might be different than those produced by other
micro, macro, and application-specific benchmarks. The
SETTLE framework can support the integration of other
benchmarks in order to control this threat and this paper
does report on the results of previously used benchmarks
(e.g., [16]). Second, the experiments only focused on a
single implementation of the tuple space concept, the

JavaSpace that is provided with the Jini 1.2.1 network
technology. However, this is one of the most widely used
tuple space implementations with an available source
code and binary download. As long as the tuple space
implementation adheres to the conventions established
by the Jini network technology, SETTLE can measure
the performance of this space. SETTLE can also bench-
mark tuple space implementations that do not integrate
with Jini (e.g., [25]) by customizing the framework to
use the space’s own communication facilities. Finally,
the experiments only measure tuple space performance
in a single execution environment since the JVM, oper-
ating system kernel, thread library, and other environ-
mental factors were not varied during experimentation.
Since SETTLE is implemented in the Java programming
language, it is possible to use the framework to measure
tuple space performance in any execution environment
for which a JVM is available.

6 Results Analysis
6.1 Benchmark Execution Time
Figure 5 shows the time that was required to execute
each of the benchmarks for the four different values of q
and a non-aged JavaSpace. These results indicate that
for each q, NullIO always takes the least amount of exe-
cution time and FileIO always requires the greatest time
to execute. The execution of FileIO with q = 22 require
41% more execution time than the similarly configured
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Figure 8: NullIO Execution Time with an Aged JavaSpace.

NullIO benchmark. Across all of the benchmarks, the
execution with twenty-two clients uses 882% more time
on average than the same benchmark that only uses two
clients. These results also indicate that the complete exe-
cution of five trials of the four benchmarks for a non-aged
tuple space and all values of q consumed approximately
100 minutes of execution time.

6.2 Throughput and Response Time
Figure 6 provides a graphical representation of the mea-
surements of X(Si, O, q), the throughput of a Java-
Space.5 These results confirm that the FileIO bench-
mark is the most “difficult” since it must write and
take the largest Entry object. Each of the benchmark
results also contain a “knee” where throughput levels off
after the number of clients progresses beyond a certain
threshold. The throughput of the NullIO, StringIO, and
ArrayIO benchmarks levels off at eight clients and the
throughput of the FileIO benchmark knees at fourteen
concurrent clients.

The results show that X%(Si, O, 2, 8) = 20.8% and
X%(Si, O, 8, 14) = −1.8% for the NullIO benchmark.
The StringIO and ArrayIO benchmarks demonstrate
similar throughput percent changes since the transi-
tion from two to eight clients respectively yields val-
ues of 15.9% and 15.1%. At the point where through-
put knees, X%(Si, O, 8, 14) = −1.4% for StringIO and
X%(Si, O, 8, 14) = −.6% for ArrayIO. Even though
the FileIO benchmark knees at a different location in
its throughput curve, the percent changes in through-
put are like those of the other benchmarks because
X%(Si, O, 2, 14) = 9.1% and X%(Si, O, 14, 22) = −1.8%.
Finally, the error bars that are used in Figure 6 to indi-
cate standard deviations show that all throughput mea-
surements show little dispersion.

It is also important to examine the relationship be-
tween the throughput and response time curves for a

5In all graphs that depict “Operations/sec,” we consider
an operation to be either a take or a write. Thus, a bench-
mark executed with two clients that each write and take
1000 objects must perform a total of 4000 space operations.

Object # Age (Std Dev) ms Clean (Std Dev) ms
Null 1000 5233.2 (630.5) 3266.0 (72.8)

3000 10527.8 (36.6) 6264.4 (239.3)
6000 19098.4 (1285.9) 10925.2 (2150.9)

12000 34838.6 (1393.8) 17468.6 (112.1)
String 1000 5670.4 (694.7) 3565.0 (15.0)

3000 11655.0 (64.3) 6893.2 (47.0)
6000 21446.2 (1056.0) 11335.6 (81.2)

12000 39200.0 (1632.1) 20376.6 (177.4)
Array 1000 5601.2 (128.2) 3719.4 (77.1)

3000 12584.4 (1146.4) 7399.8 (91.4)
6000 22142.8 (1234.5) 12413.2 (114.9)

12000 40381.2 (1136.2) 22531.6 (21.8)
File 1000 5901.6 (204.1) 3837.0 (21.7)

3000 13567.4 (1280.3) 7747.2 (147.3)
6000 23836.8 (1492.6) 13044.8 (95.8)

12000 44198.8 (1848.4) 23589.6 (262.9)

Figure 9: Aging and Cleaning Overhead.

tuple space. Figure 7 provides a “two-axis” graphical
depiction of the throughput and response time curves
for each of the benchmarks. Every benchmark creates
a response time that approximates a linear increase in
R(Si, C, O, q) as the number of clients increases. These
results indicate that R%(Si, C,O, 8, 14) is 78.2% on aver-
age for the NullIO, StringIO, and ArrayIO benchmarks
and R%(Si, C,O, 14, 22) = 60% for FileIO. The graphs
in Figure 7 can also be used to show what the average
client response time will be if a tuple space attempts
to maintain a certain level of throughput or a specific
number of concurrent clients. Using the results from the
FileIO benchmark, it is evident that a tuple space-based
file transfer program that attempts to perform twenty-
two concurrent file transfers will create an average client
response time of approximately 81 ms while maintaining
a throughput of approximately 263 operations/sec.

6.3 Aging and Cleaning
Figure 8 presents the time that was required to execute
the NullIO benchmark with an aged JavaSpace. When
these results are combined with those provided by Fig-
ure 5, it is evident that when |W | = 3000 this results
in approximately a 30% increase in execution time over
the same benchmark that uses a non-aged tuple space.
Figure 9 shows the mean and the standard deviation of
the time required to age and clean a space. The experi-
ments demonstrate that: (i) the mean time for aging and
cleaning increases as the workload size increases, (ii) the
mean time required for aging is always greater than that
required for cleaning, and (iii) aging and cleaning time
overheads exhibit relatively little dispersion. The first
result confirmed our intuitive expectation and the sec-
ond result is due to the fact that the aging technique
must repeatedly accrue the costs of serializing the differ-
ent Entry objects when it performs a write, while the
space cleaner can avoid these costs by using a snapshot
of a “wildcard” template when it performs a take [7].6

6Intuitively, snapshotting replaces a template with a
sparser representation that is only meaningful to the Java-
Space that produced the snapshot.
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Figure 10: The Percentage of Execution Time for (a) Aging and (b) Cleaning During the NullIO Benchmark.

Figure 10 shows T%
age and T%

clean, the percentage of Nul-
lIO benchmark execution time devoted to aging and
cleaning, respectively. The trends depicted in Figure 10
also hold for the other benchmarks used in the ex-
periment. These results reveal that aging with large
workloads never consumes more than 31% of the entire
time required to execute a benchmark. Furthermore,
aging with a small or moderate sized workload (e.g.,
|W | = 1000 or |W | = 3000) always needs less than 15%
of the benchmark execution time. As expected, aging has
a smaller impact on execution time when q is larger and
T%

clean is always smaller than T%
age for the same value of

q. In summary, these results indicate that the time over-
head associated with aging and cleaning is acceptable.

Figure 11 provides the results from the experiments to
determine the impact of aging when eight clients per-
form the benchmarks (the results for fourteen clients
were similar, yet more pronounced). In these graphs,
a workload of size zero (e.g., |W | = 0) on the horizon-
tal axis corresponds to a data point from a benchmark
that did not use aging. These results clearly indicate
that the aging technique causes an increase in the aver-
age response time and a decrease in the overall through-
put as the aging workload size increases. However, cer-
tain benchmarks are more dramatically impacted by the
use of aging. For example, when an aging workload of
size 1000 is used, NullIO shows a decrease in through-
put from 387 operations/sec to 289 operations/sec while
ArrayIO only decreases from 298 operations/sec to 287
operations/sec.7 Yet, as the size of the aging workload
increases to 12000, all of the benchmarks demonstrate

7This result is due to the fact that the initial NullIO ex-
periments were conducted with a NullEntry configuration
that did not contain any fields and the aging experiments
used a NullEntry with the boolean field called aged (see
Section 4 for more details about this design choice). In fu-
ture experiments we will only use the modified version of
NullEntry. Preliminary experiments indicate that when the
modified NullEntry is used during all experiments, the re-
duction in throughput and the increase in response time is
similar to those found in the other benchmarks.

similarly high response times and low throughputs. This
indicates that aging can impact the performance of an
implementation of the tuple space concept.

We also investigated the impact of aging when an Entry
type different from the one used by the benchmark is
placed into the tuple space. For example, we placed
NullEntry objects into the space when the FileIO bench-
mark was executed. For each benchmark and all non-
benchmark Entry types, we found that aging with the
all-write workload never had an impact on tuple space
performance. In light of the intuitive discussion in Sec-
tion 3.4, this is due to the fact that the benchmark
and non-benchmark Entry objects are stored in differ-
ent instances of SimpleEntryHolder. When a take is
executed with a template of the benchmark type, the
FastList within the SimpleEntryHolder for the non-
benchmark type used during aging does not have to be
searched. In summary, these results provide support for
the assertion that aging with the same Entry type as
the chosen benchmark can cause the take operation to
exhibit O(na) performance, as discussed in Section 3.4.

7 Related Work

To our knowledge, no prior work has specifically ad-
dressed the measurement of tuple space throughput and
response time when an aging technique is applied be-
fore the execution of a benchmark that uses concurrent
local clients. However, the research described in this pa-
per is directly related to prior research in the areas of:
(i) the benchmarking and behavior characterization of
distributed system middleware, (ii) the benchmarking of
tuple space implementations, (iii) the measurement and
modeling of computer program performance, and (iv)
the performance analysis of software applications imple-
mented in the Java programming language.

Detailed empirical studies by Bulej et al. [2], Cecchet et
al. [4], and Pugh and Spacco [18] indicate that the anal-
ysis and characterization of middleware performance is
challenging. Bulej et al. detail a new middleware bench-
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Figure 11: Impact of Aging on (a) Throughput and (b) Response Time for Eight Clients.

marking technique called regression benchmarking (simi-
lar to software regression testing [13, 19, 20]) that repeat-
edly executes performance benchmarks in an attempt to
identify performance regressions in middleware [2]. In-
terestingly, Bulej et al. also reveal that certain complex
benchmarks such as RUBiS and TPC-W are not appli-
cable in the context of regression benchmarking because
their execution incurs a significant time overhead and
the results are subject to mis-interpretation [2]. Similar
to the research described in this paper, Bulej et al. focus
on the use of simple benchmarks that test an isolated
feature of a distributed system middleware.

In the context of category (ii), Sterck et al. evaluate the
performance of a tuple space that is a component within
a framework for performing bioinformatics computations
[22, 23]. However, the application-specific benchmarks in
these papers do not produce results that are meaningful
in other application domains. While Noble and Zlateva
do report benchmark results for astrophysics computa-
tions, some of their micro benchmarks do produce re-
sults that are relevant to other domains [16]. Hancke et
al. and Neve et al. specifically focus on measuring the
performance of JavaSpaces through statistically guided
experiments [8, 15]. However, Hancke et al.’s and Neve
et al.’s current focus on remote workers could introduce
unwanted experimental variability (neither paper clearly
states whether the experiment network was isolated from
contaminating traffic). Unlike this paper, neither Hancke
et al. nor Neve et al. describe the initial state of the
JavaSpace or a technique that can be used to populate
the space before benchmark execution [8, 15].

In category (iii), Jain [11] and Lilja [14] both provide
excellent introductions to the art and science of com-
puter performance analysis. Furthermore, the file sys-
tem aging technique proposed by Smith and Seltzer mo-
tivated the approach to tuple space aging described in
this paper. Horgan et al.’s platform-independent anal-
ysis of Java program performance at the bytecode level

[10] is relevant to category (iv). Alternatively, Zhang
and Seltzer present an application-specific benchmark-
ing framework that evaluates Java virtual machine per-
formance in light of the behavior of a specific application.
Dufour et al. propose a series of dynamic metrics that at-
tempt to characterize the behavior of a Java application
in a platform independent fashion [5] while Sweeney et
al. use hardware performance monitors to shed light on
the performance characteristics of Java programs [24].
Finally, Hauswirth et al. [9] present different techniques
that can be used to profile and understand the behavior
of Java software applications. Each of these techniques
could complement the benchmarking and aging provided
by the SETTLE framework.

8 Conclusions and Future Work

Since many distributed applications rely upon a tuple
space to provide communication and coordination facil-
ities, there is a clear need for benchmarking techniques
that are customized for spaces. To this end, this pa-
per describes the Space bEnchmarking and TesTing
moduLEs (SETTLE), a framework that supports the
execution of benchmarks that characterize the perfor-
mance of an example of the tuple space concept known
as the JavaSpace. This paper makes three important
contributions. First, this paper describes a technique for
the measurement of the throughput and response time
characteristics of a tuple space that handles concurrent
requests from local clients. Second, this paper explains a
novel tuple space aging technique that seeds a space with
Entry objects before a benchmark is executed. Third,
the detailed empirical study in this paper demonstrates
that: (i) the JavaSpace can support between eight and
fourteen concurrent requests from local clients without
suffering a reduction in average client response time, (ii)
tuple space aging can be performed with acceptable time
overhead and (iii) aging does support the characteriza-
tion of the worst-case performance of a tuple space.



Future research can be divided into two categories: (i)
extensions to the SETTLE framework and (ii) additional
empirical studies of different tuple space performance
characteristics. For example, the SETTLE framework
could be extended by including new micro, macro, com-
bined, and application-specific benchmarks. SETTLE
can also be extended to sample Trandom from probabil-
ity distributions like Zipf and Gaussian. It would also be
useful if the SETTLE framework provided testing tech-
niques to isolate defects within and establish a confidence
in the correctness of tuple space implementations and tu-
ple space-based applications.

Future experiments could focus on one or more of the fol-
lowing: (i) a comparison of the baseline performance of
transient and persistent tuple spaces, (ii) the evaluation
of a tuple space aging technique that creates deep inher-
itance hierarchies for the Entry objects, (iii) the investi-
gation of the impact that tuple space aging has on persis-
tent tuple spaces, (iv) the benchmarking of JavaSpaces
that handle remote client interactions, (v) the compari-
son of the performance of different tuple space implemen-
tations such as Arnold et al.’s RDBSpace [1] and Wyckoff
et al.’s TSpaces [25], and (vi) an examination of the im-
pact that operating system thread libraries have on the
performance of tuple spaces. Finally, detailed workload
studies for real world tuple space-based applications will
enable the recording of tuple space aging workloads and
the creation of new benchmarks. These workload studies
must be supported by a tuple space monitoring infras-
tructure that can analyze the contents of a space and the
interactions between a space and its clients.

References
[1] G. C. Arnold, G. M. Kapfhammer, and R. S. Roos. Imple-
mentation and analysis of a JavaSpace supported by a relational
database. In Proceedings of the 8th International Conference on
Parallel and Distributed Processing Techniques and Applications,
Las Vegas, Nevada, June 2002.

[2] L. Bulej, T. Kalibera, and P. Tuma. Repeated results anal-
ysis for middleware regression benchmarking. Performance Eval-
uation, 60(1-4):345–358, 2005.

[3] N. Carriero and D. Gelernter. A computational model of
everything. Communications of the ACM, 44(11):77–81, November
2001.

[4] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Perfor-
mance and scalability of EJB applications. In Proceedings of the
17th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 246–261, 2002.

[5] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dy-
namic metrics for Java. In Proceedings of the 18th ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages,
and Applications, pages 149–168, 2003.

[6] C. J. Fleckenstein and D. Hemmendinger. Using a global
name space for parallel execution of UNIX tools. Communications
of the ACM, 32(9):1085–1090, 1989.

[7] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces: Prin-
ciples, Patterns, and Practice. Addison-Wesley, Reading, Mas-
sachusetts, 1999.

[8] F. Hancke, G. Stuer, D. Dewolfs, J. Broeckhove, F. Arickx,
and T. Dhaene. Modelling overhead in JavaSpaces. In Proceedings
of EuroMedia, pages 77–81, 2003.

[9] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Ver-
tical profiling: understanding the behavior of object-oriented ap-

plications. In Proceedings of the 19th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 251–269, 2004.

[10] J. Horgan, J. Power, and J. Waldron. Measurement and
analysis of runtime profiling data for Java programs. In IEEE In-
ternational Workshop on Source Code Analysis and Manipulation,
pages 124–132, November, 2001.

[11] R. Jain. The Art of Computer Systems Performance Anal-
ysis. John Wiley and Sons, Inc., New York, 1991.

[12] G. M. Kapfhammer. Automatically and transparently dis-
tributing the execution of regression test suites. In Proceedings of
the 18th International Conference on Testing Computer Software,
Washington, D.C., June 2001.

[13] G. M. Kapfhammer. The Computer Science Handbook,
chapter 105: Software Testing. CRC Press, Boca Raton, FL, sec-
ond edition, 2004.

[14] D. J. Lilja. Measuring Computer Performance: A Practi-
cioner’s Guide. Cambridge University Press, 2000.

[15] H. D. Neve, F. Hancke, T. Dhaene, J. Broeckhove, and
F. Arickx. On the use of DOE for the characterization of Java-
Spaces. In Proceedings of the European Simulation and Modelling
Conference, pages 24–29, 2003.

[16] M. S. Noble and S. Zlateva. Scientific computation with
JavaSpaces. In Proceedings of the 9th European Conference on
High Performance Computing and Networking, June 2001.

[17] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda
meets mobility. In Proceedings of the 21st International Confer-
ence on Software Engineering, pages 368–377, 1999.

[18] B. Pugh and J. Spacco. RUBiS revisited: why J2EE bench-
marking is hard. In Companion to the 19th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 204–205, 2004.

[19] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software Engineer-
ing and Methodology, 6(2):173–210, April 1997.

[20] M. Rummel, G. M. Kapfhammer, and A. Thall. Towards
the prioritization of regression test suites with data flow informa-
tion. In Proceedings of the 20th Symposium on Applied Computing,
Santa Fe, New Mexico, March 2005.

[21] K. A. Smith and M. I. Seltzer. File system aging – increasing
the relevance of file system benchmarks. In Proceedings of the 1997
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 203–213, 1997.

[22] H. D. Sterck, R. S. Markel, and R. Knight. Parallel
Computing in Bioinformatics and Computational Biology, chap-
ter TaskSpaces: A Software Framework for Parallel Bioinformatics
on Computational Grids. John Wiley and Sons, 2005.

[23] H. D. Sterck, R. S. Markel, T. Phol, and U. Rude. A
lightweight Java TaskSpaces framework for scientific computing on
computational grids. In Proceedings of the ACM SIGAPP Sympo-
sium on Applied Computing, pages 1024–1030, 2003.

[24] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Di-
wan, D. Grove, and M. Hind. Using hardware performance moni-
tors to understand the behavior of Java applications. In Proceed-
ings of the 3rd Virtual Machine Research and Technology Sympo-
sium, May 2004.

[25] P. Wyckoff, S. McLaughry, and T. Lehman. T Spaces. IBM
Systems Journal, pages 454 – 474, 1998.

[26] X. Zhang and M. Seltzer. HBench:Java: an application-
specific benchmarking framework for Java virtual machines. In
Proceedings of the ACM Conference on Java Grande, pages 62–
70, 2000.

[27] B. Zorman, G. M. Kapfhammer, and R. S. Roos. Cre-
ation and analysis of a JavaSpace-based genetic algorithm. In
Proceedings of the 8th International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas,
NV, June 2002.


