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ABSTRACT

Regression test suite prioritization techniques reorder test
cases so that, on average, more faults will be revealed earlier
in the test suite’s execution than would otherwise be possi-
ble. This paper presents a genetic algorithm-based test pri-
oritization method that employs a wide variety of mutation,
crossover, selection, and transformation operators to reorder
a test suite. Leveraging statistical analysis techniques, such
as tree model construction through binary recursive parti-
tioning and kernel density estimation, the paper’s empirical
results highlight the unique role that the selection opera-
tors play in identifying an effective ordering of a test suite.
The study also reveals that, while truncation selection con-
sistently outperformed the tournament and roulette opera-
tors in terms of test suite effectiveness, increasing selection
pressure consistently produces the best results within each
class of operator. After further explicating the relationship
between selection intensity, termination condition, fitness
landscape, and the quality of the resulting test suite, this
paper demonstrates that the genetic algorithm-based priori-
tizer is superior to random search and hill climbing and thus
suitable for many regression testing environments.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging;
1.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms

Experimentation, Algorithms, Verification

Keywords

test prioritization, coverage testing, genetic algorithm

1. INTRODUCTION

Since developers inevitably introduce errors while imple-
menting software systems, they often use software testing to
detect and isolate these defects. As the source code grows in
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size, test cases are written for the new functionality. How-
ever, these new tests do not obviate the old ones. In an
attempt to ensure both the correctness of new code and its
proper integration into the system, every existing test case is
executed in a test suite T = (¢1, t2,t3,...,tn) [27]. Yet, high
test suite execution times often make regression testing chal-
lenging for large commercial applications, with a single run
frequently spanning days or weeks [7]. Prioritization may
accelerate the fault detection rate of a test suite, allowing
engineers to detect and begin correcting faults sooner.

Following Harman and Clark, we note that there are many
different metrics, such as the average percentage of faults
detected [7] and coverage effectiveness [25], for evaluating
the quality of a test suite ordering [9]. Yet, because even
small test suites have a substantial number of different or-
derings, it is too expensive to compute the effectiveness
of every potential test ordering produced by a brute force
search. For instance, a test suite of only 15 test cases has
15! = 1,307,674, 368, 000 different orderings. These charac-
teristics — a very large solution space, no efficient algorithm
for constructing an optimal solution, a suitable fitness func-
tion, and many potential solutions — mark test suite priori-
tization as a prime candidate for the application of a search-
based method like the genetic algorithm [4].

As an extension of [14], this paper implements and empir-
ically evaluates a genetic algorithm (GA)-based prioritizer
that features six mutation operators, seven approaches to
crossover, and three methods for performing selection [12].
Using the “higher is better” coverage effectiveness (CE) met-
ric [25] as a fitness function, the prioritization method incor-
porates both the execution time and requirement coverage
of each test in order to evolve a test suite that rapidly cov-
ers the test requirements. Since high coverage tests are often
correlated to high fault detection [8, 22], a genetic algorithm
that uses the CE metric has the potential to identify test
suite orderings that find faults faster.

While the empirical results ultimately demonstrate that
the genetic algorithm finds test suites with high CE scores,
the GA-based approach has many parameters, thus making
it more challenging for testers to determine the best configu-
ration of this technique for their own applications. To miti-
gate this concern, this paper shows how to use automatically
generated tree models [2] to discover the best configuration
of genetic algorithm-based approaches to reordering a test
suite. In particular, we use the binary recursive partitioning
algorithm [2, 5] to construct tree models that reveal how
the explanatory variables (e.g., the selection operator) im-



pact the CE value of the resulting prioritization. The use of
these explanatory trees, in conjunction with a kernel density
estimator that visualizes the shape of the distribution for a
method’s CE scores, reveals the important role of the selec-
tion operator in evolving high quality test orderings. Since
the empirical results also show that the GA-based priori-
tizer is better than both random search and hill climbing,
this paper establishes the genetic algorithm as an appro-
priate choice for regression testing environments in which
testers must repeatedly run high quality test orderings.
The important contributions of this paper include:

1. The description of a comprehensive genetic algorithm-
based test suite prioritization framework that uses the
coverage effectiveness score for fitness and includes nu-
merous operators for mutation, crossover, and selec-
tion (Sections 2 through 4).

2. An empirical study that leverages established statis-
tical analysis techniques to explicate the role of the
selection operator during search-based test prioritiza-
tion and demonstrate the benefits of using a GA over
random search and hill climbing (Sections 5 and 6).

3. Suggestions for future work that may yield improve-
ments to the efficiency and effectiveness of search-based
test suite prioritizers (Section 7).

In addition, the prioritization technique described in this
paper, called GELATIONS (GEnetic aLgorithm bAsed Test
sulte priOritizatioN System), is completely implemented as
free and open source software and is available at http://
gelations.googlecode.com/. We released our framework,
along with all of the data sets needed to reproduce our em-
pirical results, in order to enhance the reproducibility of our
experiments and to encourage and facilitate future research
into search-based test suite prioritization.

2. MOTIVATION

Suppose that a test suite T = <t17t27t37t4> covers a set
of three test requirements R(T) = {ri,r2,r3}. Each re-
quirement represents partial fulfillment of a test adequacy
criterion, such as the traversal of paths in a calling context
tree [18] or edges in a control flow graph [32], and a test is
said to cover a requirement when it satisfies that require-
ment’s criterion. Figure 1 illustrates coverage relationships
(e.g., t1 covers r1), and gives the execution times for each
test case. In this example, time(t;) is the execution time of
test ¢; and CE(T) is the coverage effectiveness of test suite
T, which is 0.54 before prioritization (see Section 3 for more
details about the computation of the CE score).

First, consider prioritizing T with a greedy algorithm that
uses the ratio of coverage to execution time as a greedy
choice metric [25]. Since ¢3 has the highest ratio value,
the greedy algorithm will produce a prioritized test suite
T’ = (t3,t1,t2,ts) with a slightly improved coverage effec-
tiveness score of 0.55. Next, suppose that we prioritize T’
using the GELATIONS framework that employs a search-
based approach. Since the genetic algorithm performs global
optimization, it is likely to overcome local optima that the
greedy algorithm becomes stuck on due to “greedy fool-
ing” patterns in coverage data. As shown in Figure 1, the
GA presented in Section 4 produces a prioritized test suite
T" = (t1,t2,ts,t3) that features a CE(T") score of 0.63, a
value that is higher than the one for both the original or-
dering and the greedily re-ordered test suite.

T1

time(t1) = time(tz2) = time(ts) = 1
time(ts) = 2.45

CE(T = <t17t27t37t4>) = 0.54
CE(T’ = <t37t17t27t4>) = 0.55
CE(T” = <t1,t2,t4,t3>) = 0.63

Figure 1: A “Greedy Fooling” Test Suite.

Other than avoiding certain kinds of suboptimal solu-
tions, the GA has three additional advantages over greedy
techniques. Previous theoretical and empirical studies have
shown that genetic algorithms are often amenable to par-
allelization [3, 33]. Given the increasing use of multi-core
CPUs and graphics processing units (GPUs) for general com-
putation, parallelization has the potential to effectively re-
duce the cost of GA-based methods. GAs can also be inter-
rupted during their execution, thus enabling the identifica-
tion of the test ordering that is currently the best and the
use of a “human in the loop” prioritization model where a
person effectively guides the search algorithm [29].

A third advantage of the GA-based method concerns the
degree to which it can construct diverse test orderings that
achieve equivalent coverage effectiveness scores [30]. If the
test coverage report and the execution time of the tests does
not change, then multiple prioritizations of a given test suite
produced by a greedy algorithm will always be identical. In
contrast, the genetic algorithm is likely to yield different
orderings. It is more desirable to use different orderings of
tests to cover the same requirements than it is to repeatedly
use an unchanged test ordering. This activity ensures that
latent properties of the tests that are not reflected in the
requirements will be brought to bear on the application,
possibly increasing the test suite’s capability to find faults
not connected to the adequacy criterion. The GA is ideally
suited for this task because it can produce different test
orderings that have similar CE scores.

3. EVALUATING TEST SUITES

A test coverage monitor allows software testers to charac-
terize the behavior of a program while the test suite ex-

ecutes. Given a test suite T = <7§1715271537...,tn>7 a test
coverage monitor identifies a set of covered requirements
R(T) = {r1,r2,73,...,7m}. Each test case t; is associated

with a non-empty subset of requirements R(¢;) C R(T") that
t; is said to cover [11, 25]. The coverage effectiveness (CE)
metric evaluates a prioritized test suite by determining the
cumulative coverage of the tests over time [25].

As defined in Equation (1) and depicted in Figure 2, the
cumulative coverage function C(T,1) takes as input a test
suite T' and a time [ and returns the total number of re-
quirements covered by T after running for [ time units. To
guarantee CE € (0, 1), the integral of C(T,1) is divided by
the integral of the ideal cumulative coverage function C(T, 1)
that Equation (2) defines as immediate coverage of all the
requirements. Equation (3) shows that these integrals are
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Figure 2: Coverage Effectiveness.

taken within the closed interval 0 to I(n) where [(i) is the
time required to execute tests ti,t2,...,t; and there are a
total of n test cases in the entire suite.

Due to the fact that the prioritized test suite T" still covers
all of the requirements exercised by the original suite T" (i.e.,
R(T') = R(T)), CE will never take on the value of zero.
Furthermore, the CE value for an ordering will not be equal
to one because Equations (1) through (3) stipulate that the
first group of requirements are not covered until the first
test finishes execution. In fact, the CE metric conservatively
credits each test with the coverage of its requirements when
it finishes execution since many test coverage monitoring
tools do not record the point in time when a test case covers
a requirement [11, 21, 28]. While CE may be unfair to high
coverage tests with extended running times, the metric does
furnish a time sensitive measurement of effectiveness. In
contrast, prior metrics such as APFD [7], APBC, APDC,
and APRC [14], do not factor time into the evaluation of
a prioritization technique. Thus, our work extends [14] by
incorporating test case time into the coverage metric. Unlike
existing evaluation metrics that do incorporate time (e.g.,
APFD. [16] and NAPFD [23]), CE does not require the use
of fault information when calculating an effectiveness rating.

0 L <(1)
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Figure 4 provides an empirical cumulative distribution
function (ECDF) that shows the range of coverage effective-
ness scores for the example test suite from Figure 3. The
ECDF curve represents the probability that the coverage ef-
fectiveness value is less than or equal to a specific value on
the horizontal axis. After enumerating and evaluating each
of the 4! = 24 different test orderings, we find that the ini-
tial test suite, (t1,t2,ts,ts) has the lowest CE value of 0.343.
In contrast, the test suite <t27t47t37t1> has the highest CE
score of 0.743. Figure 4 also reveals that 60% of the test
suite orders have a CE value that is less than or equal to
0.52, further demonstrating that the value of the coverage
effectiveness metric may vary considerably and thus moti-
vating the need for test prioritization methods.
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Figure 3: Coverage Effectiveness Example.
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Figure 4: CE Values for the Example Test Suite.

4. TEST SUITE PRIORITIZATION

The input to the prioritizer includes information concern-
ing the requirement coverage and execution time of each
test case in the suite undergoing prioritization, as seen in
Figure 3. During initialization of the genetic algorithm, an
initial set of orderings, or population, is randomly gener-
ated. Four main phases characterize the primary loop of
the genetic algorithm. First, the GA calculates the fitness
value of each individual in the population. While we use
the coverage effectiveness score from Section 3 for this pa-
per’s empirical study, GELATIONS supports the integration
of other fitness functions such as the average percentage of
faults detected [7]. Using memoization, the algorithm stores
the fitness values of previously evaluated orderings in a hash
table, so that they will not need to be evaluated again.

After computing CE scores, a selection operator chooses
individual orderings from the population to become the par-
ents of the next generation. Next, a crossover operator
combines pairs of parent orderings into new child orderings.
As an example, partially-mapped crossover picks sub-tuples
within two parents, constructs a mapping between the tests
in these sub-tuples, and creates children by iteratively swap-
ping tests according to the mapping [12]. Finally, a fraction
of the new child orderings are mutated, or altered in some
random way. For instance, the insertion mutation operator
randomly moves one of the test cases to a different loca-
tion in the ordering [12]. The algorithm continues until it
reaches the termination condition, which is the stagnancy
of the population’s fitness. Intuitively, after a number of
generations have passed in which no new most fit individual
emerges, the algorithm exits and returns the best test suite.

As noted in Figure 5, the GA-based prioritizer uses three
different types of selection operators. The first is roulette se-
lection [31], a fitness-proportionate selection strategy which
assigns a selection probability to each ordering based on its
coverage effectiveness score. In particular, the framework
contains a regular roulette selection operator (ROU), an ex-
ponential transformation operator in which the square root
is taken of each fitness value (ROUE), and a linear ranking



[ Operator Type

Abbreviation | Full Name

DM Displacement mutation
EM Exchange
. ISM Insertion
Mutation [12] IVM Inversion
SIM Simple inversion
SM Scramble
CcX Cycle
MPX Maximal preservative
OX1 Order
Crossover [12] 0x2 Order-based
PMX Partially-mapped
POS Position-based
VR Voting recombination
ROU Roulette [31]
Selection TRU Truncation [15]
TOU Tournament [20, 31]
Transformation | ROUE Exponential [13]
(Roulette only) | ROUL Linear ranking [13]

Figure 5: Genetic Algorithm Operators.

| Parameter Type | Values |
Mutation Rate 0.10, 0.33, 0.67
Density of New Children 0.5, .75, 1.0
Population Size 75, 150, 225
Maximum Stagnancy 20, 30, 40

Figure 6: Genetic Algorithm Parameters.

operator in which each fitness value is assigned based on the
individual’s rank within the population (ROUL) [13]. The
second type of operator, truncation selection [15], picks a
specified fraction of the most fit orderings in a population.
The operator duplicates this subset of the population un-
til the desired number of parent orderings is achieved. We
truncate the population at 40% (TRU40), 50% (TRU50),
and 60% (TRU60). Our operator sorted each population
by fitness in order to perform the truncation. The third,
called tournament selection [20], picks a specified number of
randomly chosen orderings from the population, creating a
tournament. From the tournament, the ordering with the
highest fitness value is chosen as a parent. The operator
conducts tournaments until it reaches the desired number
of parent orderings. Currently, the tournament selection
operator handles tournament sizes of two (TOU2), three
(TOU3), four (TOU4), and five (TOU5) individuals.

Figure 5 reviews all of the mutation, crossover, selection,
and transformation operators implemented in GELATIONS.
In addition to a choice for each of these operators, the ge-
netic algorithm accepts a value for several parameters, as
given in Figure 6. In this case, the mutation rate specifies
the average percentage of each group of new children that
should be subject to the mutation operator while the density
of new children gives the percentage of a population to re-
place with the offspring from crossover. Finally, population
size stands for the number of individuals in each population
and maximum stagnancy sets the number of generations over
which the genetic algorithm may fail to produce a new test
suite prioritization with a higher fitness than those already
in the population. Even though GELATIONS supports pa-
rameter values different than those in Figure 6, we use these
values for this paper’s empirical study since preliminary ex-
periments demonstrated their capability to construct a test
suite with a high coverage effectiveness score.

Suite CE Scores
Name | NCSS [T |R(T)| Initial | Reverse
DS 1243 66 40 0.8169 0.6093
GB 1455 55 88 0.4389 0.7810
JD 2716 57 783 0.6686 0.6911
LF 215 14 6 0.9903 0.9903
RM 569 16 19 0.2612 0.9215
RP 6822 79 221 0.6957 0.9154
SK 628 28 117 0.8847 0.7520
T™M 748 27 46 0.8464 0.8002

Figure 7: Case Study Applications.

5. DESIGN OF THE EMPIRICAL STUDY

Case Study Applications. Our experiment utilized
coverage and timing data gathered from eight case study
applications and their JUnit test suites. Figure 7 gives infor-
mation about each application, in terms of non-commented
source statements (NCSS), test suite size (|T']), and the num-
ber of requirements in the coverage report (|R(7T’)|). We also
furnish the CE scores of the initial and reverse ordering of
the test suite since these values can serve as a useful base-
line. Even though GELATIONS supports a coverage report
for a wide variety of adequacy criteria, this paper’s empiri-
cal study uses the coverage of the paths in a calling context
tree (CCT) [18], as detected by instrumentation probes in-
serted into the applications prior to testing [11]. Although a
CCT-based adequacy criterion may be criticized for not in-
corporating the (i) source code or parameters of the methods
under test and (ii) state of the program, it has been shown
to perform closely to other test adequacy criterion with re-
spect to common fault detection metrics [17]. In fact, in
a recent empirical study, test suites that had been reduced
using call trees as a coverage metric were 97-100% likely to
detect each known fault in the evaluated program [19].

Analysis Techniques. This paper uses automatically
generated tree models, such as those in Figure 10, to de-
scribe the trends in the results. In particular, we use the
binary recursive partitioning algorithm [2, 5] to determine
how the explanatory variables (e.g., the choice of a mutation
operator) impact the response variable (e.g., a metric such
as CE). We selected this type of hierarchical model because
it furnishes a simple and easy to understand view of the in-
teractions between the explanatory and response variables
[2, 5]. Moreover, tree-based methods are non-parametric
in nature, thus enabling the study of search-based prioritiz-
ers without making assumptions concerning the relationship
between the explanatory and response variables [26]. Tree
models are also easy to interpret even if the underlying data
set contains a mixture of numerical (e.g., mutation rate) and
categorical (e.g., selection operator) variables.

The root of a tree corresponds to the most important ex-
planatory variable for the given data set. By following a
path from the root to a leaf node, it is possible to deter-
mine the mean value for the specified subset of the data. In
the split points of the trees (e.g., “selection_method: TOU3,
TOU4, TOU5” in the first tree model of Figure 10), the
word before the colon is a categorical explanatory variable
and the word(s) to the right are the variable levels asso-
ciated with the left sub-tree. Moreover, the right sub-tree
always corresponds to the remaining variable levels (i.e., the
ones not included in the description of the split). Simi-
larly, a tree model can contain a split point for a numerical
variable (e.g., “child_density < 0.875”), which abides by the
same interpretation as the previously described categorical



| Random Number | Input | Output |
{172,23,4} (t1,t2,t3, [ta) | (t1,ta,t3,t2)
{1123;3} (t1,ta, |ta, t2) | (t1,ta,t3,t2)
{1,2} (1, [ta, ta, t2) | (ta,t1,ts,t2)
1

T' = (ta, t1,t3,t2)
Figure 8: Random Test Suite Prioritization.

variables. In an effort to simplify the notation and concepts,
the remainder of the discussion about the construction of ex-
planatory tree models focuses on categorical variables since
similar methods handle the numerical ones.

Our implementation of the binary partitioning algorithm
aims to discover the manner in which each of the explanatory
variables, denoted E, and its corresponding levels, written
as levels(E), impacts a response variable R. If E stands for
the mutation operator with levels(E) = {DM,EM, ...,SM}
and R is the coverage effectiveness score, then the partition-
ing procedure must find the level of F that best explains
the variations in R. During each iteration, the algorithm
examines every variable E and all of E’s levels in order to
further “grow” the tree model by picking the variable and
level combination that leads to the greatest decrease in the
deviance D(t) for tree model T.

Since a leaf in T corresponds to the arithmetic mean of
the values for R in a given configuration of the explanatory
variables, Equation (4)’s definition of deviance focuses on
each leaf A in the set of T’s leaves, denoted A(T). Given
a leaf \ and the set of response variable values associated
with A, designated R, Equation (4) sums the square of the
difference between p € Ry and p(Ry), a function defined
by Equation (5) as the arithmetic mean of the values in Rj.
The iterative process of constructing the tree by choosing the
best explanatory variable and level continues until either the
algorithm obtains no further reduction in D(t) or the size
of each R) is too small to warrant further division (we used
|Rx| < 10 as the cut-off for the trees in this paper [5]).

D)= Y > (p—nR)’ (4)

AEA(T) pERY

()

As shown in Figures 12 through 14, this paper uses a
beanplot to support the visual comparison of the distribu-
tion of CE scores for various techniques. The beanplot uses
a Gaussian kernel density estimator to show the shape of the
distribution for the CE values of test suites resulting from
a specific prioritizer [10]. In particular, the beanplot em-
ploys the non-parametric kernel density estimator to create
a smooth curve where a wide area indicates a concentration
of values, such as a CE score, and narrow regions suggest the
relative dearth of points. The thick black line in each bean
represents the arithmetic mean of CE values for a given tech-
nique, with the dashed line across the entire plot standing
for the mean across all individual beans.

(ta,t2,t3,t1,15)
(ts,t2,t3, ta,t1)
(ts,ta, t1,ta,t5)

(t1,t2,t3,ta,ts) —— (t2,t1,t3,t4,15)

(a)

<t17t57t37t47t2>

<t57t27t3 t47t1> <t17t27t5,t4,t3>

<t17t27t3at4,t5> - <t1,t2,t3,t5,t4>

(b)
Figure 9: Hill Climbing Neighborhood Generation.

Control Methods. To serve as a form of experimental
control for GA-based prioritization, we developed a method
for randomly reordering a test suite [7]. Following the mod-
ern implementation of the Fisher-Yates shuffle [6], this pri-
oritizer iterates through the test suite in reverse order, swap-
ping the current test case with a randomly chosen test. As
shown in Figure 8, when the random prioritizer shuffles
(t1,t2,t3,t4), it initially focuses on t4 and randomly picks
test index 2 from the index set {1,2,3,4}, resulting in the
output (t1,ts,t3,t2) that serves as the input to the next
round. After completing three iterations, the algorithm con-
structs the reordered test suite T' = (ta,11,ts,t2). For the
purpose of the empirical study in this paper, the random
prioritizer constructed 50, 500, and 5000 different test suite
orders for each of the eight case study applications that are
listed in Figure 7. While it is possible for the random pri-
oritizer to generate more than 5000 randomly shuffled test
suites, the results in Section 6 suggest that the mean cover-
age effectiveness value does not vary much for the different
number of randomly generated orders.

As a final experimental control, we implemented a hill
climbing (HC)-based prioritizer that uses two different neigh-
borhood generators [14]. After accepting an initial ordering
of a test suite 7', the hill climber enumerates all of 7”s neigh-
bors using either the swap-first or swap-last neighborhood
generators. Figure 9(a) shows that the swap-first approach
takes the test suite T' = (t1, to, t3, t, t5) as input and creates
a neighborhood of four orderings produced by swapping 1
with the other available test cases. As Figure 9(b) reveals,
the swap-last method proceeds in a similar fashion, except
for the fact that the generator swaps the last test, t5, with
each of the other tests. The steepest ascent (SA) hill climber
evaluates the coverage effectiveness score of each test suite
in the neighborhood and picks the one yielding the largest
improvement in effectiveness. Alternatively, the first ascent
(FA) approach to hill climbing immediately chooses a test
ordering that offers an improvement in CE over the current
test suite. The HC-based prioritizer iteratively continues
this process of neighborhood generation, evaluation, and the
choice of a new ordering until none of the test suites offer a
better CE score, thus requiring the algorithm to return the
current suite as the final prioritization.
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Figure 10: Tree Models Highlighting the Factors that Influence the CE Values for RM, GB, and RP.

Threats to Validity. A number of threats to the valid-
ity of this study should be mentioned. Software defects in
our prioritizer are an ever-present internal validity threat.
To control this concern, we implemented a suite of JUnit
test cases to evaluate the core classes of the GELATIONS
framework. Secondly, since this paper does not specifically
investigate the role of crossover operators, we limited the
study of this operator’s configurations. For instance, some
crossover operators always selected between 25% to 50% of
the test suite from one of the parents. We picked this base-
line configuration in order to ensure a roughly equal con-
tribution of genetic material from each parent. Although
we do not think that our implementation of the crossover
operators compromised our empirical results, future studies
could configure the crossover operators differently.

The relatively small sizes of the case study applications
is an external threat to the conclusions of this study. The
largest application, RP, consisted of 6822 non-commented
source statements, which is rather small compared to other
commercial and open-source software applications. We in-
tend to incorporate larger case study applications in our
future empirical studies of search-based prioritizers. A fi-
nal limitation of this study concerns the number of require-
ments produced by the test adequacy criterion. The great-
est number of requirements for any single application was
783 for JD. Additional experiments could use coverage data
based on different test adequacy criteria, such as branch or
definition-use coverage, that may yield more requirements.

6. EXPERIMENTAL RESULTS

Figure 10 highlights the factors that influence the cover-
age effectiveness score of the test suite produced by vari-
ous configurations of the GA-based prioritizer. Since “selec-
tion_method” is at the root of each tree, these models reveal
that the most important configuration parameter (i.e., the
one that leads to the greatest drop in deviance) is the choice
of the selection operator. Furthermore, certain operators,
such as truncation and roulette selection, tend to enable the
genetic algorithm to construct better test suites. For in-
stance, the left sub-trees of the RM model have CE scores
ranging between 0.7685 and 0.9664 while the right sub-tree
representing the different ROU and TRU operators has a
superior average CE score of 0.9674. With the exception of
the smallest application, LF, for which all prioritizer con-
figurations find effective test suites, this trend also holds
for the trees associated with the other case study applica-

Name ]| ROUE | ROUL ]| TRUG0 | TRU40 ]| TOU2 | TOUS

DS 0.9742 | 0.9837 0.9893 0.9915 0.9514 | 0.9706
GB 0.9500 | 0.9572 0.9668 0.9700 [| 0.9062 | 0.9402
JD 0.9247 | 0.9328 0.9431 0.9451 0.8993 | 0.9192
LF 0.9903 | 0.9903 0.9903 0.9903 [| 0.9903 | 0.9903
RM 0.9665 | 0.9670 0.9681 0.9682 0.9328 | 0.9475
RP 0.9774 | 0.9824 0.9868 0.9879 [| 0.9570 | 0.9705
SK 0.9859 | 0.9878 0.9911 0.9915 0.9667 | 0.9763
T™M 0.9585 | 0.9605 0.9662 0.9672 0.9503 | 0.9579

[Ave. ] 09659 | 0.9702 ]| 0.9752 | 0.9765 ]| 0.9443 | 0.9591

Figure 11: CE Scores Across Selection Operators.

tions. When examined in conjunction with the CE scores
from Figure 7, the tree models also demonstrate that the
search-based prioritizers produce test suites that are nor-
mally better than both the initial and reverse orderings.

Blickle and Thiele define selection intensity as the change
in the average fitness of a population due to selection [1].
According to our results, within each type of operator an
increase in selection intensity corresponds to an improve-
ment in the quality of the solution. For instance, increas-
ing the tournament size or decreasing the percentage of the
population chosen by truncation selection and applying the
linear ranking transformation for roulette selection each the-
oretically increase the selection intensity for the appropriate
type of operator [1]. Ranking tournament selection opera-
tors by average empirical fitness of the solution or by theo-
retical selection intensity produces the same ordering of the
operators. This phenomenon also holds for truncation and
roulette selection, as illustrated by the average CE scores
presented in Figure 11 for a subset of the operators.

However, this trend does not extend across operator types.
While TOU4 and TOU5 have greater selection intensities
than any of the truncation operators, truncation consis-
tently outperforms tournament in terms of solution quality,
as shown by the bold average CE scores in Figure 11. Due
to the fact that our roulette selection operators did not pre-
cisely match the template of a fitness-proportionate selection
scheme used in [1], we are unable to compare their selection
intensity with that of tournament and truncation.

In theory, strong selection leads to rapid convergence of
a genetic algorithm [1]. Yet, the GA evolved more genera-
tions, and thus converged more slowly, as selection intensity
increased for each type of selection operator. The beanplot
in Figure 13 shows that, as theoretical selection intensity
increases, so does the number of generations evolved when
prioritizing the GB application’s test suite. Although not
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Figure 12: Coverage Effectiveness of Random Prioritization Across All Applications.

shown in the paper due to space constraints, this trend gen-
erally holds across all of the other case study applications.
One explanation for this behavior lies in the relationship
between the stagnation termination condition and strong se-
lection pressure. A low intensity selection operator causes
the algorithm to meander about the search space, looking
for a particularly good local optimum to climb, apparently
causing the fitness to stagnate. A high intensity selection op-
erator, on the other hand, tends to focus on climbing a local
optimum of high quality rather than looking for the hard-to-
find global optimum, causing the fitness scores to increase
rather than stagnate. We anticipate that, if execution time
or number of generations were instead used as termination
conditions, many of the lower intensity selection operators
would outperform the high intensity operators in terms of
the quality of prioritization, given a sufficiently large execu-
tion time or number of generations. The noticeable effective-
ness of strong selection operators leads us to conclude that
the fitness landscape of CE scores has many local optima
that correspond to good test suite prioritizations. Thus, our
results do not contradict the established theory, but rather
contribute a more nuanced understanding of the interplay
between selection operators and termination conditions.
The beanplots in Figure 12 demonstrate that the arith-
metic mean of the CE scores for the randomly produced
test suites ranges between 0.6 and 0.8. The random pri-
oritizers also construct test orderings with a modest varia-
tion in their CE values, as evidenced by the fact that the
beans often have pronounced grey areas above and below
the line designating the average CE score. In contrast, the
GA-based prioritizer with order-based crossover, truncation
selection, and any value for the other parameters exhibited
a standard deviation of 0.00051 across multiple trials and all
applications. This result suggests that the GA consistently
produces results that are better than random search.
Figure 14 furnishes the beanplots for the first and steep-
est ascent hill climbers that use the swap-first neighborhood
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generators (the swap-last approach always yielded worse re-
sults than the given configurations). These plots show that
first ascent and steepest ascent hill climbers, respectively de-
noted HC-FA-FN and HC-SA-FN, construct test suites with
an average CE score of 0.8 and 0.84 across all applications.
However, Figure 11 indicates that the TRU40 selection op-
erator creates test orderings with an average CE value of
0.9765 over every application. Since these beanplots also
reveal modest variability in the CE scores produced by the
hill climbers, this empirical outcome highlights the benefits
of using a global optimizer like the genetic algorithm.

7. CONCLUSION AND FUTURE WORK

This paper presents and empirically evaluates a genetic
algorithm-based prioritization technique, thus generally re-
lating it to prior work such as Elbaum et al. [7]. As an
extension to Li et al. [14], this paper describes a comprehen-
sive GA that employs a wide variety of mutation, crossover,
and selection operators. Using automatically generated tree
models, the empirical study reveals the unique role that the
selection operator plays in constructing an effective order-
ing of a test suite. The results suggest that high selection
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Figure 14: Coverage Effectiveness of Hill Climbing Across All Applications.

intensity and selection elitism are both important for pro-
ducing good test orderings, as evidenced by the fact that
Figure 11 gives TRU40 as the selection operator yielding
the best average CE scores across all applications.
Although not the primary focus of this paper, we note
that while the GA exhibited execution times similar to the
random search and hill climbing methods, it did so with
a greater amount of variability. Yet, since the GA consis-
tently produces the most effective test suite orderings, it is
useful in development environments that repeatedly run the
same test suite on an application whose coverage report does
not markedly change across subsequent versions [7, 24]. As
part of future work, we intend to further investigate ways
to improve the performance of the GA, such as reducing fit-
ness calculation time by persisting CE scores across multiple
runs of the prioritizer if coverage and test timing data does
not change. Leveraging existing designs [3, 33], we will also
implement and evaluate parallel genetic algorithms that re-
order test suites. After further study of the GA’s various
operators and configurations, we will conduct additional ex-
periments with other fitness functions, termination condi-
tions, test adequacy criteria, and case study applications.
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