
Localizing SQL Faults in Database Applications
Sarah R. Clark∗, Jake Cobb∗, Gregory M. Kapfhammer†, James A. Jones‡, and Mary Jean Harrold∗

∗Georgia Institute of Technology, {sclark|jcobb|harrold}@cc.gatech.edu
†Allegheny College, gkapfham@allegheny.edu

‡University of California, Irvine, jajones@ics.uci.edu

Abstract—This paper presents a new fault-localization tech-
nique designed for applications that interact with a relational
database. The technique uses dynamic information specific to
the application’s database, such as Structured Query Language
(SQL) commands, to provide a fault-location diagnosis. By
creating statement-SQL tuples and calculating their suspicious-
ness, the presented method lets the developer identify the
database commands and the program statements likely to cause
the failures. The technique also calculates suspiciousness for
statement-attribute tuples and uses this information to identify
SQL fragments that are statistically likely to be responsible for
the suspiciousness of that SQL command. The paper reports
the results of two empirical studies. The first study compares
existing and database-aware fault-localization methods, and re-
veals the strengths and limitations of prior techniques, while also
highlighting the effectiveness of the new approach. The second
study demonstrates the benefits of using database information to
improve understanding and reduce manual debugging effort.

I. INTRODUCTION

Real-world software applications have large and compli-
cated code bases. As such, finding the faults that cause the
programs to fail, through the process of fault localization, can
be both time consuming and difficult. To reduce the time and
effort required to locate the faults, researchers have developed
statistical, coverage-based techniques to automate the fault
localization. These methods typically select a program entity,
such as a statement or a branch in the source code, and uti-
lize coverage information recorded from program executions,
along with statistical methods, to infer or correlate this entity
with program failure (e.g., [2], [6], [9], [11], [13], [14], [17]).

Studies performed using these fault-localization techniques
demonstrate their effectiveness in reducing the code that
developers must inspect to locate the fault (e.g., [2], [10], [14]).
Yet, the programs on which these studies have been performed
are relatively small and written in a single language, and thus,
do not consider other important components of the system
with which the program interacts. Consequently, studies have
not evaluated the effectiveness of these existing methods for
systems that interact with complex external components.

One such external component is a database—an essential
part of many software applications [7]. Brooks and col-
leagues [4] report that the most common types of errors in
three real-world industrial systems result from data-access and
handling, including interactions between the application and
the database. They also report that another common type of
error relates to the way data is passed among subsystems or
between the system and the database.1

1Private correspondence with the authors.

The most common type of database is a relational data-
base,2 with which applications interact using the Structured
Query Language (SQL) to select, update, insert, and delete
data [7]. Not only can SQL commands contain control and
data dependencies, but the results of their executions often
determine further calculations and execution paths of the
program. As such, these results can potentially propagate the
effects of an SQL fault to other parts of the application.
Existing methods are limited in the information that they
can provide to the developer because they do not address
applications’ use of relational databases.

Database-specific faults include problems with the structure
of the database (i.e., schema faults), incorrect values stored
in the database (i.e., data faults), and problems with the SQL
commands used to query and modify the database (i.e., SQL
faults). Although the overall goal of our work is to develop
techniques capable of localizing all these types of faults, our
first technique, and the one presented in this paper, is a new
approach to fault-localization that targets SQL faults. Our
database-aware method monitors SQL commands executed by
database applications and uses the observed database interac-
tions to assist in debugging the program in two ways. First, the
technique helps developers discover the specific SQL calls that
are made at runtime, which lets developers study and reason
about the contents of the commands. Second, the technique
informs the statistical calculation of the database commands
and attributes that are most likely to be the cause of program
failures, thus, giving the developers guidance as to where to
focus their attention during testing and debugging.

Our technique creates statement-SQL tuples by combining
executed SQL command information with program locations
(i.e., statements) at which these commands are executed. The
method then computes the suspiciousness of each program
statement and each statement-SQL tuple, and provides a
ranking of them both. If multiple SQL commands are executed
at a particular location, our technique further decomposes the
commands to produce statement-attribute tuples and assigns
a suspiciousness to each to help the developer identify which
part of the SQL query is most associated with program failure.

The main benefit of our method is that, unlike previous
approaches to fault-localization, it uses database-specific infor-
mation to rank SQL commands in the program along with their
associated attributes. Thus, the technique can help developers
locate faults in a database application more precisely than

2A survey of developers that appeared in InfoWorld in September 2003 reported that
89.2% of the respondents indicated that they use relational databases [1].

existing approaches that consider only program statements.
Another benefit of our technique is that it provides a link
between program statements and the SQL commands that they
executed. The developer can use this information to discover
the SQL commands that were generated by the program, find
errors within these commands, and discover the places in the
program where they were invoked. A third benefit of our
technique is that it serves as a starting point for additional
research on fault localization for both database applications
and programs with other kinds of external components, such
as configuration files and network communication. Thus, it can
help in addressing the complexities of real-world software.

This paper also presents the results of empirical studies that
evaluate our technique when applied to three database applica-
tions. The first study investigates how well our database-aware
fault-localization approach performs compared to an existing
statistical fault-localization technique. The study reveals that,
although the existing technique performs well on faults related
to the Java code, it is not always as effective for database-
specific faults. The second study examines the qualitative
value of the additional database-specific information that the
new method provides to the developer. This study shows
that, depending on the database application’s structure, this
additional information can be extremely valuable.

The main contributions of this paper are:
• The first database-aware fault-localization technique,

which includes information from SQL calls made by the
application, and thus, uses database-related information
in computing suspiciousness for fault localization.

• A prototype database-aware fault-localization system that
provides the developer with a ranked list of suspicious
entities as well as details about the SQL commands
executed by the database application.

• Empirical studies that compare our new technique with
an existing fault-localization method, and illustrate (1)
the limitations of these existing approaches in providing
information related to faults in the database commands
and (2) the improvement over existing fault-localization
techniques that can be achieved with database-aware
approaches. Our results show that at least one such
technique—the one we present in this paper—provides up
to 94.6% improvement in fault-localization effectiveness
over existing non-database-aware techniques. Such results
highlight the need for research in this area.

II. RELATIONAL DATABASES AND MOTIVATING EXAMPLE

This section presents background on relational databases
as well as an example illustrating the limitations of applying
existing fault-localization techniques to database applications.

A. Relational Databases

The most common type of database is the relational
database [7]. Figure 1 shows a simple relational database con-
sisting of one table, SALE, that records product sales. Database
tables have columns or attributes to identify the stored data and
rows that contain collections of related data. The SALE table

SALE
MERCHANTID CUSTOMERID PRODUCT PRICE

1 1 Cat Food $9.99
2 1 Soda $1.00
2 3 Cheese $3.99
3 2 Hammer $5.00
3 3 Nails $0.50
3 4 Drill $30.00

Fig. 1: A populated database table.

TABLE I: Sample configuration.

userType: Merchant
Attributes: PRODUCT, PRICE
WHERE Clause: MERCHANTID >= #userID
userType: Customer
Attributes: PRODUCT, PRICE
WHERE Clause: CUSTOMERID= #userID

contains attributes MERCHANTID, CUSTOMERID, PRODUCT, and
PRICE. The second row in the table is 〈2, 1,Soda, $1.00〉 where
2 is the MERCHANTID, 1 is the CUSTOMERID, Soda is the
PRODUCT, and $1.00 is the PRICE. Applications use SQL
to access, modify, add to, and delete data in the database.
SQL provides four main commands for interaction with the
database: SELECT retrieves data from the database; UPDATE
modifies existing data in the database; INSERT adds new data
to the database; and DELETE removes data from the database.

B. Motivating Example

The first column in Figure 2 contains a code snippet, method
printProductsSold, that uses the database table in Fig-
ure 1 to display sales information about products sold: MER-
CHANTID, CUSTOMERID, PRODUCT, and PRICE. Each time a
product is sold, a record is added to the database table to reflect
the sale. The method then prints a list of the products sold. A
user of the system can be either a Customer or a Merchant. The
user classification and the user’s customer or merchant number
are determined at login. The method printProductsSold
receives information for the user requesting the data in
userType and userID. For this code snippet, the at-
tribute list and the WHERE clause for the SQL query are
stored externally. Method calls conf.getAttributes and
conf.getWhere, defined elsewhere in the application, re-
trieve the attribute list and WHERE clause, respectively, from
the external configuration for the specified user type and
ID. Method call printResultSet(rs), also defined else-
where in the application, prints its parameter.

Table I shows the initial configuration for the example code
snippet in Figure 2. In the table, each user type has its own set
of data: a list of attributes and a WHERE clause. The expression
#userID in each WHERE clause refers to the userID passed
into the method calls that get data from the configuration. The
merchant configuration has a fault in the WHERE clause, which
reads “>=” instead of “=”.

The second through eighth columns of Figure 2 provide
information about the test cases: three have Merchant as the
user type and four have Customer as the user type. The top
of each column identifies the user, the bullets in the columns
indicate which statements were executed by the test case, and

Program Entities Test Cases

printProductsSold(String UserType, String userID) { M
e
r
c
h
a
n
t
,

1

M
e
r
c
h
a
n
t
,

2

M
e
r
c
h
a
n
t
,

3

C
u
s
t
o
m
e
r
,

1

C
u
s
t
o
m
e
r
,

2

C
u
s
t
o
m
e
r
,

3

C
u
s
t
o
m
e
r
,

4

Su
sp

ic
io

us
ne

ss

1 String Attributes = conf.getAttributes(userType, userID); • • • • • • • 0.53
2 String whereClause = conf.getWhere(userType, userID); • • • • • • • 0.53
3 String SQL="SELECT "+Attributes+" FROM Sale WHERE" + whereClause; • • • • • • • 0.53
4 PreparedStatement ps = new PreparedStatement(); • • • • • • • 0.53
5 ResultSet rs = ps.executeQuery(SQL); • • • • • • • 0.53
6 printResultSet(rs); • • • • • • • 0.53
}
Pass/Fail Status F F P P P P P

Fig. 2: Example program, test cases, and suspiciousness scores.

the bottom of the column shows the execution results with P
representing passed and F representing failed. For example,
the first test case, which uses the inputs Merchant and 1,
executes all of the statements and fails.

Existing fault-localization techniques that use coverage in-
formation about program entities (e.g., statements or predi-
cates) utilize a statistical metric to associate each entity with
a suspiciousness score. One example is the Ochiai metric [2]

Suspiciousness(s) = failed(s)√
totalFailed·(failed(s)+passed(s))

(1)

where failed(s) is the number of failing test cases that execute
s, totalFailed is the total number of failing test cases, and
passed(s) is the number of passing test cases that execute s.
Other metrics for computing suspiciousness are also based on
passing and failing test cases and the coverage provided by
them (e.g., [6], [11], [13], [14], [17]).

The last column in Figure 2 shows the suspiciousness
computed using the Ochiai metric [2] for the example code
snippet and test suite. Although the example has a fault in
the SQL query at statement 5, no information is provided
by the fault-localization technique to help developers iden-
tify the faulty query. In fact, considering the suspiciousness
values given, even statement 5 has the same suspiciousness
as the other statements. This limitation of existing fault-
localization methods—the lack of suspiciousness score for the
database-specific entities—motivated the development of our
new database-aware fault-localization technique.

III. DATABASE-AWARE FAULT LOCALIZATION

This section defines the terms used for database-aware fault
localization, describes the challenges we encountered while
developing our technique, and presents a new database-aware
fault-localization method.

A. Database Interactions

SQL provides four main commands for interaction with the
databases: SELECT, UPDATE, INSERT, and DELETE. For our
purposes, we give a name to a statement in the application
that invokes the database driver and executes these commands:
database-interaction point. A database-interaction point is a

location in the source code where control and data transfer
from the application to the database system and back again.

One unique aspect of database applications is the querying
and modification process. (We discuss the implications of these
database-application design choices for fault-localization in
Section IV-F.) There are two steps in this process: building
the SQL command and executing the SQL command. For an
application to build an SQL command, there are three main
approaches: (1) applications can construct SQL commands
within the code, such as by creating or modifying a string;
(2) an external source, such as a configuration file or user
input, can provide the SQL command to the application; or
(3) part of the command can be built in the code and other
parts of the command, such as attributes, can be received
from an outside source. For an application to execute an
SQL command, there are two approaches: (1) applications
may use many database-interaction points to execute the SQL
commands; or (2) applications use one (or few) centralized
database interaction point. These SQL execution patterns are
not mutually exclusive: an application may contain more of
one type or use a more even mixture of both types.

B. Database Fault-localization Entities
Existing fault-localization techniques select a program en-

tity, such as a statement, a branch, or a predicate, on which
to perform the fault localization. The first challenge we en-
countered in developing our database-aware fault-localization
technique was to identify an appropriate database entity that
would be most useful for fault localization.

Our first approach was to localize on database attributes.
Using existing statistical metrics, such as Tarantula [10], [11]
and Ochiai [2], we calculated the suspiciousness for each
attribute used in the SQL queries made by the application.
Although ranking attributes by their suspiciousness proved to
be quite accurate, the technique was not able to relate these
attributes to the application. Thus, this method could not report
sufficient information to the developers to locate the fault.

Our second approach aimed to address the limitations of the
attribute-ranking approach by relating the attributes back to
the application code. To accomplish this relationship between
attributes and the application, we created statement-attribute
tuples, which link each statement with the attributes that it

executes. We calculated the suspiciousness of the statement-
attribute tuples using the same statistical metrics we used
in the first approach. Again, the rankings were effective in
identifying the faulty attribute as suspicious, but two new
difficulties arose. First, depending on the application, many
statement-attribute tuples received the same suspiciousness
score. Second, when the SQL command was built dynamically
or retrieved from a file, it was not obvious which SQL
command had been executed. Without the SQL command
providing the context in which the attributes were interacting,
it was often difficult to know how to proceed with the faulty
statement-attribute tuple.

To provide this context, our third approach constructs
statement-SQL tuples. Knowing the SQL commands that ex-
ecute at each statement and computing their suspiciousness
scores was successful. However, we lost the information about
which attribute in the command was most suspicious. Thus, to
regain the precision lost in localizing on entire SQL commands
rather than just faulty attributes, we created, and present in the
next section, a technique to leverage the strengths of both the
statement-SQL and the statement-attribute approaches.

C. Our Integrated Technique

Our database-aware fault-localization technique has two
main goals for SQL faults: (1) to localize on the faulty
statement-SQL tuple or statement-attribute tuple, and (2) to
provide additional information about the SQL commands
executed by the test suite. Figure 3 gives a dataflow diagram3

that represents our database-aware fault-localization technique.
The technique accepts as input an application A, a test suite
T for A, and a database used by A. The technique outputs, to
the developer, the SQL Execution Data and the Suspiciousness
Rankings of statements, statement-SQL tuples, and statement-
attribute tuples for multi-SQL statements.

Instrument Application instruments A to produce Â, an
instrumented version of the application. Â performs the same
sequence of operations as A, but also records statement-
coverage information, the SQL commands executed, and the
statement that executed each SQL command. Run Test Cases
executes Â with test suite T , and records and outputs the
Statement Coverage and the Executed SQL command infor-
mation. Identify Statement-SQL & Statement-Attribute Tuples
produces Statement-SQL Tuples and Multi-SQL Statement-
Attribute Tuples. Statement-SQL tuples are defined as the set
of 〈s, c〉 such that, for each test case t ∈ T , the execution
produces St, which contains the coverage information of each
statement s during execution of t, Ct, which is a set of SQL
command data tuples 〈s, c〉 where c is an SQL command that
was executed and s is the statement that initiated the SQL
call, and pt, which indicates whether t passed or failed. Multi-
SQL Statement-Attribute Tuples are produced as the set SAt

for each test case t ∈ T by parsing attributes from the SQL
commands c from each statement-SQL tuple 〈s, c〉 only when
statement s has executed multiple unique SQL commands.

3In the dataflow diagram, labeled edges represent data and rounded boxes represent
the processing of the data.

Identify

Statement-SQL &

Statement-Attribute

Tuples

Run Test Cases
Instrument

Application

Calculate

Statement

Suspiciousness

Calculate

Statement-SQL

Suspiciousness

Compute

Rankings

Calculate

Statement-Attribute

Suspiciousness

Executed

SQL

Statement-SQL

Tuples

Statement

Coverage

Multi-SQL

Statement-Attribute

Tuples

Statement

Suspiciousness

Scores

Statement-SQL

Suspiciousness

Scores

Application A Test Suite T Database

Developer

Statement-Attribute

Suspiciousness

Scores

Suspiciousness

Rankings

SQL Execution

Data

Fig. 3: Database-aware fault-localization technique.

In the example in Figure 2, statement 5 is a multi-SQL
statement because two unique SQL commands are executed:
SELECT PRODUCT, PRICE FROM SALE WHERE MERCHANTID = ?

SELECT PRODUCT, PRICE FROM SALE WHERE CUSTOMERID = ?

These commands expand to the four statement-attribute tu-
ples: 〈5, PRODUCT〉, 〈5, PRICE〉, 〈5, CUSTOMERID〉, and
〈5, MERCHANTID〉.

Calculate Statement Suspiciousness, Calculate Statement-
SQL Suspiciousness, and Calculate Statement-Attribute
Suspiciousness produce Statement Suspiciousness Scores,
Statement-SQL Suspiciousness Scores, and Statement-
Attribute Suspiciousness Scores, respectively, by employing
M , the suspiciousness metric. M can be any of the existing
coverage-based suspiciousness metrics, such as Tarantula [10],
[11] or Ochiai [2]. In this case, an entity e may be a statement
s, a statement-SQL tuple 〈s, c〉, or a statement-attribute tuple
〈s, a〉. Our technique records the number of passing and
failing test cases that cover each entity, and applies M to
obtain the suspiciousness score. To illustrate, consider the
example in Figure 4. When suspiciousness is computed using
the integrated database-aware fault-localization technique with
the Ochiai metric, the suspiciousness of the faulty query
at statement 5 (i.e., SELECT . . . MERCHANTID >= ?) is
0.82. Figure 5a shows the result of applying Ochiai to the
statement-attributes tuples, and Figure 5b reveals the outcome
of using the result to inspect a suspicious SQL command.

Program Entities Test Cases

printProductsSold(String UserType, String userID) { M
e
r
c
h
a
n
t
,

1

M
e
r
c
h
a
n
t
,

2

M
e
r
c
h
a
n
t
,

3

C
u
s
t
o
m
e
r
,

1

C
u
s
t
o
m
e
r
,

2

C
u
s
t
o
m
e
r
,

3

C
u
s
t
o
m
e
r
,

4

Su
sp

ic
io

us
ne

ss

1 String Attributes = conf.getAttributes(userType, userID); • • • • • • • 0.53
2 String whereClause = conf.getWhere(userType, userID); • • • • • • • 0.53
3 String SQL="SELECT "+Attributes+" FROM Sale WHERE" + whereClause; • • • • • • • 0.53
4 PreparedStatement ps = new PreparedStatement(); • • • • • • • 0.53
5 ResultSet rs = ps.executeQuery(SQL); • • • • • • • 0.53

〈5, SELECT PRODUCT, PRICE FROM SALE WHERE MERCHANTID>=?〉 • • • 0.82
〈5, SELECT PRODUCT, PRICE FROM SALE WHERE CUSTOMERID=?〉 • • • • 0.00

6 printResultSet(rs); • • • • • • • 0.53
}
Pass/Fail Status F F P P P P P

Fig. 4: Example program, test cases, and suspiciousness scores from Figure 2 with SQL command tuples included.

Attribute Pass Fail Suspiciousness
PRODUCT 5 2 0.53
PRICE 5 2 0.53
CUSTOMERID 4 0 0.00
MERCHANTID 1 2 0.82

(a) Attribute suspiciousness at statement 5.

Suspiciousness SQL Subclause
SELECT

0.53 PRODUCT,
0.53 PRICE

FROM SALE WHERE

0.82 MERCHANTID>=?

(b) Suspicious SQL command attributes.

Fig. 5: Expansion of attributes from SQL commands at state-
ment 5 in Figure 4.

In the final step, Compute Rankings creates a single
list by combining Statement Suspiciousness Scores and
Statement-SQL Suspiciousness Scores. This step then sorts
the list by suspiciousness scores from greatest to least,
and outputs the Suspiciousness Rankings. This ranked list
of statements, statement-SQL tuples, and statement-attribute
tuples, along with the executed SQL-command informa-
tion, is then presented to the developer for use in locat-
ing the fault. In the example in Figure 4, after sorting, the
statement-SQL tuple 〈5, SELECT . . . MERCHANTID >= ?〉 and
the statement-attribute tuple 〈5, MERCHANTID〉, with suspi-
ciousness scores of 0.82, appear as the top-ranked entities.
This SQL command and attribute are, in fact, the sources of
the fault in this example.

In our example in Figure 2, the existing technique was
unable to localize the faulty statement. However, our database-
aware technique was able to pinpoint the database-interaction
point, the faulty SQL command, and the attribute involved
in the faulty subclause of that command. Although the SQL
command in this example is simple, for illustrative purposes,
the additional information provided by our technique can be
especially useful when the SQL commands are obfuscated or
large and complex, as they often are in practice.

IV. EMPIRICAL STUDIES

To evaluate our technique, we implemented it and performed
two empirical studies. This section discusses the implementa-
tion, describes the subjects, overviews the empirical setup, and
presents the results of the studies.

A. Implementation

We implemented our technique in Java for use on Java
database applications. We modified COBERTURA4 to provide
per-test-case coverage because the original implementation
supports only aggregate test-suite coverage. We used P6SPY4

to capture executed SQL commands. To enable association
of SQL commands with database-interaction points in the
program, and to identify statement-SQL tuples, we modified
P6SPY to capture statements that dispatch SQL commands.

To identify statement-attribute tuples, we used a modified
version of the UNITY parser [15] to create a tool that parses
the output of our modified P6SPY. Our modifications to the
UNITY parser let the tool parse additional constructs and
syntactic variances that occur across SQL dialects.

To compute the suspiciousness of program entities, our tool
collects statement coverage and statement-SQL coverage, and
identifies all statements that execute multiple unique SQL
commands to create the appropriate statement-attribute tuples.
The tool then uses this coverage information, along with the
results of the JUnit test cases, to compute the suspiciousness
of every observed entity, using the Ochiai metric [2]. The tool
sorts the program statements, statement-SQL, and statement-
attribute tuples by suspiciousness to provide a ranking. Finally,
we use scripts that we created to execute the mutated versions,
process the data, and assess the effectiveness of the technique.

B. Subjects

For our studies, we used three programs: ITRUST, JWHOIS-
SERVER, and MESSAGESWITCH. Table II shows the number
of lines of Java code, the number of database tables referenced
by the application, and the number of database interaction

4http://cobertura.sourceforge.net/, http://www.p6spy.com/

TABLE II: Subject details.

Subject Java LOC DB Tables DBI Points
ITRUST 25517 30 157
JWHOISSERVER 6684 10 2
MESSAGESWITCH 3672 15 16

TABLE III: Mutants for each subject program.

Subject Code Mutants SQL Mutants
ITRUST 100 125
JWHOISSERVER 50 40
MESSAGESWITCH 25 10

points in each application. The first subject, ITRUST,5 which
was created as a class project at N. C. State University for
teaching testing techniques, is a medical application that caters
to patients and the medical staff. ITRUST uses a MySQL5

database and is predominately written in Java. ITRUST’s
database queries are mostly static: the majority come from pre-
written String literals and are not constructed at runtime.
For our studies, we considered only the Java portion of the
application. We ran 802 of the JUnit test cases that accompany
the application, excluding those that tested the HTTP interface.

The second subject, JWHOISSERVER,6 is an open source
WHOIS server implemented in Java that includes config-
uration files, Velocity templates,7 and permits a variety of
database dialects to be used. In our studies, we configured
JWHOISSERVER to use HSQLDB.6 Unlike ITRUST, JWHOIS-
SERVER’s database commands are constructed dynamically at
runtime from data stored in the configuration files. We used
the 79 JUnit test cases provided by the application.

The third subject, MESSAGESWITCH, is a proprietary ap-
plication used by a transaction-processing company. The ap-
plication is implemented in Java and uses an Oracle8 database.
MESSAGESWITCH also includes configuration files and Spring
templates.7 MESSAGESWITCH provides its database com-
mands in configuration files, completely external to the Java
code. To evaluate our technique, we ran the 80 JUnit test cases
used by the company to test the application.

For each subject, we created single-fault mutants, and used
them as faulty versions of the subject. We created two types
of mutants: (1) Code mutants contain code faults in the
application; and (2) SQL mutants contain SQL faults in the
application. Table III shows the number of mutants for each
subject by mutant type. We manually created the mutants
because existing mutation tools are unable to process our
subject programs. We constructed each mutant by applying one
of the mutation operators [16], [19] to the original program.
Examples of such mutations can be found in Section IV-E.

C. Empirical Setup

For each mutant of the program, we
1) Identified the faulty entities for each technique,
2) Instrumented the program to gather SQL-command and state-

ment coverage,

5http://agile.csc.ncsu.edu/iTrust, http://www.mysql.com
6http://jwhoisserver.net/, http://hsqldb.org/
7http://velocity.apache.org/, http://www.springsource.org/
8http://www.oracle.com/products/database

3) Ran the test suite and recorded the coverage,
4) Identified the multi-SQL database interaction points,
5) Parsed the SQL commands to obtain statement-attribute tuples

for the multi-SQL statements,
6) Calculated the suspiciousness of all monitored entities,
7) Ranked the entities according to decreasing suspiciousness

scores, and
8) Assessed the effectiveness of the approach.

To facilitate the evaluation, we performed the identification of
the faulty entities in Step 1 differently depending on the type
of mutation in the program: for code mutants, we identified
the faults by program statements, and for SQL mutants, we
identified the faults by statement-SQL tuples.

D. Study 1: Quantitative Evaluation

The goal of this study is to compare the effectiveness
of statement-based fault-localization techniques that do not
provide special treatment of database interactions with our
database-aware fault-localization technique. To evaluate the
effectiveness of a proposed technique, previous work in fault
localization (e.g., [10], [14]) uses a ranking system as well as
the percentage of code a developer would not need to inspect
by utilizing the ranked results. We emulated this evaluation
approach for this study. We used the Ochiai metric to compute
suspiciousness values and rankings for each entity. We defined
the faulty entities for statement-based fault-localization: for
code mutants, we used the statement containing the mutated
code; for SQL mutants, we used either the mutated statement,
when the mutation occurred within the application code (e.g. a
String literal containing SQL), or the database-interaction
point where the faulty SQL command was executed, when
the mutation was external to the source code. We defined
the faulty entities for database-aware fault-localization: for
code mutants, we again used the mutated statement; for SQL
mutants, we used the faulty statement-SQL tuple or statement-
attribute tuple consisting of the database-interaction point and
the faulty SQL command or attribute, respectively.

Table IV shows our results—the percentage of faults that
can be found without examining 99% and 90% of the code.
The data is separated by subject and then by fault type. “SQL”
refers to SQL faults, “Code” refers to code faults, and “All”
refers to the combination of both the SQL and the code faults.
The data is also separated by the technique used to calculate
the rankings: Stmt 99% refers to the statement-based technique
and DB 99% refers to the database-aware technique.

We found that for ITRUST, the statement-based approach
did well at localizing both SQL and code faults. Specifically,
97.6% of the code faults, 94.1% of SQL faults, and 96.6%
of all faults were found within the top 1% of the statement
rankings. Statement-based fault-localization also performed
well on MESSAGESWITCH for both types of faults: 26.3%
of the code faults, 50.0% of the SQL faults, and 32.0% of all
faults were found within the top 1% of the statement rankings.
However, the approach did not do as well for the SQL faults
in JWHOISSERVER, only 17.4% of the code faults, 0.0% of
the SQL faults, and 6.7% of all faults were found within the
top 1% of the statement rankings.

TABLE IV: Study 1 Results.

Subject Fault Stmt DB Stmt DB
Type 99% 99% 90% 90%

ITRUST SQL 94.1% 94.1% 100% 100%
Code 97.6% 97.6% 97.6% 100%
All 96.6% 96.6% 98.3% 100%

JWHOISSERVER SQL 0.0% 94.6% 86.5% 100%
Code 17.4% 13.0% 60.7% 60.9%
All 6.7% 63.3% 76.7% 85.0%

MESSAGESWITCH SQL 50.0% 66.7% 100% 100%
Code 26.3% 26.3% 68.4% 68.4%
All 32.0% 36.0% 76.0% 76.0%

By comparing the results of the statement-based approach
with the results using our database-aware technique, we can
see that our database-aware technique does considerably bet-
ter for JWHOISSERVER, especially for the SQL faults. The
ITRUST results for both the statement-based and the database-
aware techniques are very similar. Thus, there was little
room for improvement, and our technique succeeded in not
degrading the effectiveness. For ITRUST, 97.6% of the code
faults, 94.1% of the SQL faults, and 96.6% of all faults
were found within the top 1% of the entity rankings. For
JWHOISSERVER, 13.0% of the code faults, 94.6% of the SQL
faults, and 63.3% of all faults were found within the top 1%
of the entity rankings. For MESSAGESWITCH, 26.3% of the
code faults, 66.7% of the SQL faults, and 76.0% of all faults
were found within the top 1% of the entity rankings.

E. Study 2: Qualitative Case Study

The goal of this study is to evaluate the additional benefits
of our technique that are difficult to quantify numerically.
We realize that not all developers will debug by stepping
through the application one entity at a time in ranked order.
Developers may use the rankings to identify sections of code
that seem suspicious, and then investigate further from that
point. Nevertheless, after a section of code that includes a
database interaction point has been identified as suspicious,
our database-aware technique provides additional information
that can be useful to the developer. For this case study, we
assume the developer has located a suspicious section of code.
Each of our subjects builds its SQL commands in a slightly
different manner so we selected one mutant of each subject
to examine. For each mutant, we provide a code sample to
illustrate the suspicious section of the application, a description
of the mutation, and a discussion of the additional information
provided to the developer by our technique.

1) ITRUST: The majority of SQL commands in ITRUST are
static strings embedded in the source code. ITRUST typically
prepares and executes these commands at or close to the
location of the string. For example:

ps = conn.prepareStatement(
"UPDATE GlobalVariables SET Value=? " +
"WHERE Value=’Timeout’");

ps.setInt(1, mins);
int numUpdated = ps.executeUpdate();

In this example, the mutation is an attribute re-
placement; the clause Value=’Timeout’ was originally

Name=’Timeout’, where Value and Name are both at-
tributes of the GlobalVariables table. Because the SQL
command is in a String literal just before the database-
interaction point—the ps.executeUpdate call—the de-
veloper would be able to identify the SQL command quickly
when the database-interaction point is suspicious. Our tech-
nique provides some additional assistance by revealing the
literal values used in executions of the SQL command:

UPDATE GlobalVariables SET Value=21 WHERE Value=’Timeout’
UPDATE GlobalVariables SET Value=5 WHERE Value=’Timeout’

These values can provide clues beyond those given by
the structure of the SQL command itself. In this particular
example, Value is being assigned integer values but is
compared with a textual string.

2) JWHOISSERVER: JWHOISSERVER builds SQL com-
mands dynamically from command fragments contained in
non-standard configuration files and String literals. All
SQL commands in the application are executed by one of
two database-interaction points. The majority of the SQL
commands are executed by the following method:9

private final synchronized
ResultSet execPST(PreparedStatement pst)

throws SQLException {
ResultSet res = pst.executeQuery();
return res;

}

The execPST method takes the SQL command to execute
as the parameter pst. It is apparent that the suspiciousness of
this database-interaction point alone does not easily lead the
developer to the faulty SQL command as it would in ITRUST.
Furthermore, the SQL commands are constructed in a more
dynamic manner as illustrated in this method:

protected final String getWherePart() {
Vector<String> qv = this.getQfield();
final String qf = this.getQfield().get(0);
StringBuilder ret = new StringBuilder(
"WHERE "+qf+" <= ? "
+"AND inetnumend >= ? "
+"AND "+this.bytelengthField+" = ? ");

if (this.getWhereaddition().length() > 0) {
if(!this.getWhereaddition().startsWith(" ")) {
ret.append(" ");

}
ret.append(this.getWhereaddition());

}
ret.append("ORDER BY "+qf+" ASC, inetnumend ASC");
return ret.toString();

}

In the method getWherePart, pieces of the WHERE
clause, including use of the inetnumend attribute, are
contained in String literals, and the rest are input
through method calls and member fields. The calls to
getQfield and getWhereaddition and the access of
bytelengthField all reference data from an external
configuration file. A sample from one such file is:

9Logging code has been omitted from all JWHOISSERVER examples.

db.inetnum.table=inetnum
db.inetnum.objectlookup=inetnum;inet
db.inetnum.qfield=inetnumstart
db.inetnum.key=descr
db.inetnum.bytelength=bytelength
db.inetnum.display=netname AS network;

bytelength;inetnumstart;inetnumend;descr;source
db.inetnum.recurse.person=admin_c;tech_c

Many SQL mutations for JWHOISSERVER involve changes
to configuration files. In this example, the value of
db.inetnum.key changed from netname to descr.
For this application, identifying the database-interaction
point as suspicious is not particularly useful to the de-
veloper: it takes many steps to work back to where the
PreparedStatement was created and even then it is not
immediately apparent which tables, attributes, and values were
used in the SQL command. Our technique provides additional
helpful information: it supplies the full SQL commands ex-
ecuted at the database-interaction point, ties each command
to the test case that executed the command, and indicates the
correlation of each command with the failure of test cases
in the test suite. The database-interaction point alone is not
ranked highly because it is executed by both passing and
failing test cases. In contrast, our technique identifies the
database-interaction point and mutated SQL command with
high suspiciousness:
dbpool.java:631
select descr, netname as network, bytelength,

inetnumstart, inetnumend, source from inetnum
where inetnumstart <= ? and inetnumend >= ?
and bytelength = ?
order by inetnumstart asc, inetnumend asc

Suspiciousness: 0.9128709291752769

For this application, our technique aides the developer both
through a more precise ranking and by directly presenting the
command information. Even if existing techniques identified
the database-interaction point in JWHOISSERVER as highly
suspicious, which they do not, the developer would be left
with more manual effort in locating the relevant command.

3) MESSAGESWITCH: MESSAGESWITCH utilizes static
SQL commands, which it retrieves from external configuration
files. MESSAGESWITCH is similar to ITRUST in that its SQL
commands are not constructed dynamically, and similar to
JWHOISSERVER in that the commands come from external
files rather than being defined directly in the source code.
MESSAGESWITCH is a proprietary application, so we are un-
able to show the actual contents of the source or configuration
files. Instead, the following examples emulate the structure,
database-access strategies, and SQL command patterns of the
application. Database interaction in MESSAGESWITCH tends
to follow the pattern shown below:
public CourseGrade selectStudentGradeByCourse(

long studentId, String course) {
CourseGrade grade = null;
grade = _template.queryForObject(

getSqlByKey(SQL_SELECT_STUDENT_GRADE_BY_COURSE),
_studentMapper, new Object[]
{ studentId, course, course });

return grade;
}

The static SQL command to execute is identified by the
key SQL_SELECT_STUDENT_GRADE_BY_COURSE. In this
case, the developer must first locate the definition of the key
to find the value, which corresponds to a configuration file
entry containing the SQL command. The key references the
following SQL command:
<sql key="selectStudentGradeByCourse">
SELECT student_id FROM (
SELECT sg.student_id
FROM ${config.schema}.v_grade_professor_xref gpx
INNER JOIN ${config.schema}.grade sg
ON sg.student_id = gpx.student_id

<!-- 25 lines omitted -->
WHERE p.short_name = ? AND u.course = ?
AND u.is_active = 1 AND gt.short_name = ’letter’
)

</sql>

An SQL mutation might change the comparison of
gt.short_name from ’letter’ to ’audit’. Given
only the database-interaction point, the developer would need
to locate both the key and the external configuration file that
defines the command. Even though a developer familiar with
the application would know to perform these lookups when
a database-interaction point is implicated in test-case failure,
our technique reduces this effort by supplying the executed
SQL command directly to the developer.

F. Discussion

The results of the first study demonstrate that, in some
cases, a statistical, statement-based (i.e., non-database-aware)
approach to fault-localization is effective at locating database-
related faults. However, there are also cases in which the
statement-based approach is insufficient and fault-localization
is considerably more effective with a database-aware approach.
The statement-based technique on JWHOISSERVER was able
to correctly place none of the SQL faults within the top 1%
of the code examined, whereas the database-aware technique
was able to find 94.6% of those SQL faults. This increase
in effectiveness in the localization of the fault is likely to
translate to savings in the time a developer requires to find
and identify the fault responsible for software failures. In the
case of ITRUST, the statement-based technique was already
able to correctly place 94% of the SQL faults in the top 1%
of the code examined, and this number does not change when
using the database-aware extensions.

We investigated why the statement-based approach was
effective for ITRUST and MESSAGESWITCH but not for
JWHOISSERVER. We found that it performed well for ITRUST
and MESSAGESWITCH because their database-interaction
points showed little dynamic behavior. That is, the majority of
database-interaction points in ITRUST executed only one dis-
tinct SQL command—the structure of the command remained
fixed and only the literal values changed. In this case, the
suspiciousness score assigned to a statement-SQL tuple will
necessarily be the same as the score of the statement itself. If
we were to rank statement-attribute tuples, they would also be
tied with the statement itself. However, a clear benefit of our

approach is that in this case, it automatically avoids the cost
of evaluating statement-attribute tuples.

In contrast, JWHOISSERVER is dynamic in that it con-
tains only two database-interaction points through which all
SQL commands are executed. Because the statement-based
approach makes no distinction about which SQL command is
being executed, it is ineffective at localizing to the database-
interaction point. Even if the database-interaction point were
identified, the developer would be left to manually determine
which SQL commands were executed at that point and which
among those commands was faulty. However, our approach
effectively identifies the database-interaction point and the
suspicious SQL commands, and gives additional information
about the attributes used in the faulty command.

Although for the MESSAGESWITCH application, the tech-
nique achieves results similar to ITRUST in terms of ranking,
the second study demonstrates that there is a qualitative differ-
ence between the statement-based approach and our database-
aware approach. Unlike ITRUST, MESSAGESWITCH retrieves
its SQL commands from external files rather than embedding
them in String literals close to the database-interaction
point. Similarly, the executed SQL command information
provided by our technique is extremely useful for JWHOIS-
SERVER because the SQL commands are created dynamically
and from an external source.

G. Threats to Validity

Threats to external validity arise when the results of the
study are unable to be generalized to other situations. In
this study, we evaluated our new technique using only three
applications and mutation faults, and thus, we are unable to
definitively state that our findings will hold for programs
in general. We addressed these limitations by using three
different types of applications, and by creating many mutants
of the applications that contain many different types of faults.

Threats to internal validity occur when factors affect the
dependent variables without the researchers’ knowledge. Al-
though it is possible that implementation flaws affected the
results, we have reasons for confidence in their correctness:
we built the implementation on a mature infrastructure that has
been used in previous studies (e.g., [10], [11], [17]), and the
results from the statement-based approach matches those from
the database-aware approach, which demonstrates consistency.

Threats to construct validity arise when the metrics used
for evaluation do not accurately capture the concepts that they
are meant to evaluate. The metric we used to evaluate fault-
localization effectiveness assumes the developer will inspect
the program, entity by entity, in the prescribed order until
reaching the fault, and she will be able to recognize that it is
faulty. Although this may not be a realistic debugging process,
the metric has been used in many fault-localization studies
(e.g., [10], [14]) as a reasonable approximation of the relative
effectiveness of the fault-localization technique. Moreover, we
also performed a more qualitative evaluation of the benefits of
debugging with and without the information provided by our
new database-aware fault-localization technique.

V. RELATED WORK

Although there has been no previous research on database-
aware fault-localization, there has been research in the related
areas of automated fault localization and testing and analysis
of database applications. This section reviews this research and
relates it to our presented technique.

The Tarantula [10] approach applies a statistical metric to
program entities (e.g., statements and predicates) based on
coverage of those entities by passing and failing test cases. The
output of this metric is a suspiciousness score for each entity
and is interpreted as the likelihood that the entity is responsible
for the failure (e.g., [2], [10], [11], [13]). These techniques
have been referred to as spectra-based, coverage-based, or sta-
tistical fault-localization techniques. Our database-aware fault-
localization technique extends these approaches to incorporate
entities related to the database that do not necessarily appear
directly in the program, and considers multiple-entity types at
once. Thus, it is able to more accurately assign suspiciousness
to entities related to the database than the previous techniques.

Several existing fault-localization approaches select a subset
of the program that may be responsible for the failure. Delta
Debugging [20] attempts to isolate the cause of a failure
resulting from program changes by repeatedly running the
program with a subset of the changes applied. Dynamic
slicing [3] uses an execution trace to select program entities
that influence the value of a variable at a particular point in the
program’s execution. Our approach is more lightweight than
Delta Debugging because it requires only one execution of the
test suite, and it does not require knowledge of the program
point from which the dynamic slice should be initiated.
Moreover, our approach is expressly targeted toward database
applications, which are commonly used in practice.2

Although there is no existing work on fault localization
for database applications, the literature contains a wide va-
riety of testing and analysis techniques designed for database
environments; Reference [12] provides an extensive review.
Our technique is complementary to these approaches—just
as strong testing techniques and standards improve fault-
localization, other database-aware testing techniques can help
to strengthen fault localization for database applications.

SQL mutation testing [18], [19] applies a set of syntactic
mutation operators to existing SQL queries to produce slightly
modified versions. The resulting modifications are commonly
used to assess adequacy of a test-suite. Other work extends the
set of mutation operators to incorporate additional contextual
information, such as use in Java programs [21] or by building
a conceptual data model [5]. Instead of focusing on SQL
mutation more generally, our empirical studies use a subset of
the mutation operators to seed SQL faults into the applications.
Because the SQL mutation operators in References [18], [19]
consider only the SELECT command, we extended these
operators to also handle UPDATE, INSERT, and DELETE.

Gould and colleagues [8] propose a method for statically
type-checking SQL queries generated by a Java program.
They perform static analysis to conservatively approximate

the queries a program may generate and the types of the
attributes and expressions in these queries. The results are then
checked for mismatched types. In contrast, our method uses
a dynamic analysis that operates on the SQL commands that
are executed by a test suite and leverages the results from
each test case. Even though our approach does not explicitly
consider type information, it may still reveal faults resulting
from runtime type errors.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the first database-aware fault-localiza-
tion technique—a statistical fault-localization method that
accounts for an application’s interactions with its database.
Our new approach was motivated by a study we performed on
three database applications in which we found that existing
techniques provide little help to the developer for locating
faults within the application-database interactions.

Our integrated technique uses SQL commands executed by
the test suite to compute sets of statement-SQL and statement-
attribute tuples. The technique computes suspiciousness scores
for the statement-SQL tuples, statement-attribute tuples, and
statements, then presents the developer with a ranked list and
a set of executed SQL commands to assist during debugging.

The paper also describes two empirical studies on three ap-
plications that evaluated the effectiveness of our new technique
compared to existing approaches. The first study shows that,
for our subject programs, our new technique was able to im-
prove the effectiveness of finding SQL faults as much as 94.6%
over the existing technique. The second study demonstrates
some of the qualitative benefits, such as a potentially more
efficient debugging process, provided by our technique.

The results are encouraging and demonstrate the improve-
ment that can be achieved with our new database-aware
technique. There are, however, many areas of future work that
can be explored. We performed our studies on three projects.
To fully evaluate our technique, and guide additional research,
we must identify other suitable subjects for our research.

We also investigated attribute-specific faults and localized
on statement-attribute tuples. We plan to expand the class
of faults we address to include multiple-attribute faults and
faults within other parts of the SQL command, such as
the comparative operator. Additionally, we are working on
techniques that can localize data and schema faults, which
are not captured by analyzing SQL commands.

Finally, many database applications use stored procedures
to execute their SQL code rather than building or loading the
SQL within their code. Stored procedures can contain their
own parameters, logic, and stored procedure calls. We are
investigating how to instrument stored procedures to obtain
coverage information, and use this information to enhance our
fault-localization method by helping developers localize faults
within their stored procedures. Ultimately, combining our new
database-aware technique with both these additional features,
and existing testing and analysis methods with database aware-
ness, will yield a comprehensive framework for testing and
debugging database applications.

ACKNOWLEDGEMENTS

This research was supported in part by NSF award CCF-
1116943 and a Google Faculty Research Award to UC Irvine,
by NSF awards CCF-0725202 and CCF-0541048, an IBM
Software Quality Innovation Award, and a grant from InComm
to Georgia Tech. The anonymous reviewers provided many
helpful suggestions that improved the paper’s presentation.

REFERENCES

[1] InfoWorld. http://xml.coverpages.org/xmlPapers200309.html.
[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of

spectrum-based fault localization. In Proc. of the 2nd Testing: Academic
and Industrial Conference, Practice and Research Techniques, 2007.

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proc. of the
8th Conference on Programming Language Design and Implementation,
1990.

[4] P. Brooks, B. Robinson, and A. M. Memon. An initial characterization
of industrial graphical user interface systems. In Proc. of the 2nd In-
ternational Conference on Software Testing, Verification and Validation,
2009.

[5] W. K. Chan, S.C. Cheung, and T.H. Tse. Fault-based testing of database
application programs with conceptual data model. In Proc. of the 5th
International Conference on Quality Software, 2005.

[6] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization
for Java. In Proc. of the 19th European Conference on Object-Oriented
Programming.

[7] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Addison Wesley, fifth edition, 2007.

[8] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically
generated queries in database applications. In Proc. of the 26th
International Conference on Software Engineering, 2004.

[9] L. Jiang and Z. Su. Context-aware statistical debugging: from bug
predictors to faulty control flow paths. In Proc. of the 22nd International
Conference on Automated Software Engineering, 2007.

[10] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Proc. of the 20th International
Conference on Automated Software Engineering, 2005.

[11] J. A. Jones, J. Stasko, and M. J. Harrold. Visualization of test
information to assist fault localization. In Proc. of the 24th International
Conference on Software Engineering, 2002.

[12] G. M. Kapfhammer. A comprehensive framework for testing database-
centric software applications. PhD thesis, University of Pittsburgh, 2007.

[13] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proc. of the 26th Conference on Programming
Language Design and Implementation, 2005.

[14] C. Liu, X. Yan, L. F., J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In Proc. of 10th European Software
Engineering Conference and 13th Symposium on the Foundations on
Software Engineering, 2005.

[15] T. Mason and R. Lawrence. Dynamic database integration in a JDBC
driver. In Proc. of the 7th International Conference on Enterprise
Information Systems, 2005.

[16] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An
experimental determination of sufficient mutant operators. Transactions
on Software Engineering and Methodology, 5(2), 1996.

[17] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight
fault-localization using multiple coverage types. In Proc. of the 31st
International Conference on Software Engineering, 2009.

[18] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva. SQLMutation: A tool to
generate mutants of SQL database queries. In Proc. of the 2nd Workshop
on Mutation Analysis, 2006.

[19] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva. Mutating database
queries. Information and Software Technology, 49(4), 2007.

[20] A. Zeller. Isolating cause-effect chains from computer programs. In
Proc. of the 10th Symposium on Foundations of Software Engineering,
2002.

[21] C. Zhou and P. Frankl. Mutation testing for Java database applications.
In Proc. of the 2nd International Conference on Software Testing
Verification and Validation, 2009.

