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ABSTRACT

This paper presents a benchmarking suite that measures
the performance of using sockets and eXtensible Markup
Language remote procedure calls (XML-RPC) to exchange
intra-node messages between Java virtual machines (JVMs).
The paper also reports on an empirical study comparing
sockets and XML-RPC with response time measurements
from timers that use both operating system tools and Java
language instrumentation. By leveraging packet filters in-
side the GNU/Linux kernel, the benchmark suite also calcu-
lates network resource consumption. Moreover, the frame-
work interprets the response time results in light of mem-
ory subsystem metrics characterizing the behavior of the
JVM. The empirical findings indicate that sockets perform
better when transmitting small to very large objects, while
XML-RPC exhibits lower response time than sockets with
extremely large bulk data transfers. The experiments reveal
trade-offs in performance and thus represent the first step to-
wards determining if Java remote communication primitives
can support the efficient exchange of intra-node messages.

1. INTRODUCTION
Waldo et al. describe a category of “local-remote” object-

based systems where objects are in different address spaces
but are guaranteed to be on the same computational node
[34]. Initially exemplified by systems such as Spring [27]
and Clouds [8], these local-remote systems have become in-
creasingly prevalent, thus highlighting the need for efficient
intra-node communication primitives. With the emergence
of powerful multi-core processors [24, 30], it may be de-
sirable to construct an efficient local-remote system from
the servers that previously executed in a distributed fash-
ion. In an attempt to develop a highly reliable operating
system, a local-remote approach could leverage many user-
mode servers that support self-repair operations [15, 16].
Moreover, efficient run-time debugging, profiling, and in-
strumentation techniques often perform intra-node commu-
nication with the executing program [6, 35]. While these
types of local-remote systems are often useful, flexible, and
reliable, they can incur increases in source code complexity
and implementation effort due to the use of custom intra-
node communication primitives [15, 32, 33].
In contrast to specialized implementations of local-remote

communication, the Java programming language furnishes
a wide variety of easy-to-program remote communication

primitives (RCPs) that have different performance char-
acteristics and functionality. Yet, the Java implementa-
tion of two representative RCPs, sockets and eXtensible
Markup Language remote procedure call (XML-RPC), were
not specifically designed to support communication between
Java virtual machines (JVMs) on the same computational
node. While previous empirical studies suggest that sockets
may perform up to an order of magnitude faster than XML-
PRC when transferring a significant amount of data across
nodes [2], there is a relative dearth of information about how
these primitives support intra-node communication.

To this end, this paper describes a benchmarking frame-
work that uses both Java language and operating system
timers, kernel packet filters, and JVM behavior monitors
to respectively characterize the response time, network re-
source consumption, and memory subsystem activity of both
sockets and XML-RPC. In particular, the benchmarks sup-
port the performance evaluation of Java-based software sys-
tems that perform intra-node communication, as depicted in
Figure 1. The experimental results indicate that the com-
bined use of simple benchmarks and statistical analysis tech-
niques can identify important trade-offs in the intra-node
communication performance of Java programs.

As such, this paper frames and begins to answer the ques-
tion can Java RCPs support intra-node communication? We
anticipate that the use of these benchmarks will develop a
deeper understanding of Java’s remote communication prim-
itives and subsequently lead to decreases in the message
passing overhead, code complexity, and implementation ef-
fort associated with future local-remote systems that are
developed in the Java programming language. In summary,
the important contributions of this paper include:

1. A benchmarking framework that evaluates the perfor-
mance of Java remote communication primitives and
provides the following key features (Sections 3 and 4):

(a) A suite of benchmarks with different types of com-
putations and input and output sizes.

(b) Variable granularity response time measurement
with operating system and Java language timers.

(c) The integration of the HotSpotTMJava virtual ma-
chine monitoring and measurement infrastructure
[3] so that response time can be explained in light
of memory subsystem behavior.

(d) The use of standard network packet capture tools
to measure the consumption of network resources.

(e) Support for recent versions of Java sockets, XML-
RPC, and the GNU/Linux operating system.



2. Empirical results that reveal fundamental trade-offs in
response time when remote communication primitives
transfer data between client and server JVMs running
on the same computational node (Section 5).

2. MOTIVATING PRINCIPLES

2.1 Communication Primitives
The Java programming language provides a wide vari-

ety of RCPs that could support the intra-node message ex-
change shown in Figure 1. A local-remote system can use
communication primitives such as the Java-Message Pass-
ing Interface (Java-MPI) [11, 19], Java remote method in-
vocation (RMI) [12, 25], tuple spaces [4, 36], or JXTA (i.e.,
“Juxtapose”) [26, 31]. Yet, this paper focuses on the perfor-
mance evaluation of sockets and XML-RPC because these
primitives respectively represent (i) a low-level and a high-
level remote communication mechanism and (ii) a well es-
tablished standard and a recently proposed popular alter-
native.1 While sockets typically support high performance
message passing [2], they may require a programmer to un-
derstand several low-level implementation details. Alter-
natively, even though XML-RPC may compromise a sys-
tem’s performance, it furnishes a high-level communication
paradigm that enables programming language independence
and the rapid implementation of a program [2]. While the
java.net package provides a refined implementation of sock-
ets, XML can still be directly integrated into the Java pro-
gramming language [13]. Furthermore, XML-RPC libraries
are available for Java and systems such as OpenDHT use
this protocol to facilitate client communication [28].
The java.net.Socket class provides an endpoint for com-

munication between two JVMs. The bind operation attaches
a socket to a local address on a computational node. The
accept method blocks the socket server until a connection
from a client occurs and the connect operation allows the
client to actively seek out a server at a specified address.
Sockets also furnish send and receive operations that en-
able the transmission of data. Finally, the close method re-
leases the socket’s address and ensures that it is not available
for further data transmission. Since there is often a need for
connection-oriented and reliable intra-node communication,
this paper evaluates the performance of socket-based data
transfer when TCP/IP governs the communication.
The XML-RPC primitive performs remote procedure calls

that marshall and unmarshall Java objects that are encoded
in XML. The Apache XML-RPC 2.0 implementation pro-
vides a WebServer class that is instantiated on the side
of the server and associated with a uniform resource lo-
cator (URL). All of the server’s public methods are then
available to clients through the WebServer that handles the
XML parsing and local-remote communication. The XML-
RPC client is responsible for creating an instance of the
XmlRpcClient class that automatically binds to the server’s
URL. Finally, the client invokes execute with a textual de-
scription of the desired server method and the Java objects
that will serve as parameters. This paper measures com-
munication performance when XML-RPC uses HTTP and
TCP/IP, due to the prevalence of this configuration.

1Since the benchmarking framework supports the integration of
other RCPs, Section 7 notes that we intend to incorporate and
evaluate other communication primitives in future work.
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Figure 1: Intra-Node Communication.

2.2 Benchmarking Suites
Zhang and Seltzer observe that there are three main pur-

poses for benchmarking: (i) comparing the performance of
different systems, (ii) guiding performance optimizations,
and (iii) predicting an application’s performance in new soft-
ware and hardware environments [37]. Furthermore, Zhang
and Seltzer place software performance benchmarks into one
of four categories: (i) micro, (ii) macro, (iii) combined, and
(iv) application-specific benchmarks [37]. In the context of
intra-node communication, this paper describes nano and
micro benchmarks that measure the performance of remote
communication primitives for Java.2 Our nano benchmarks
focus on the analysis of several basic operations that are
commonly used in local-remote applications (e.g., transmis-
sion of a single value or a list of data values). The micro
benchmarks incorporate small and well-defined operations
(e.g., finding a data value in a list or reversing the provided
list) that require server-side computations and thus may be
found in a real-world local-remote system.

According to Horgan et al. [18], the performance evalua-
tion of Java programs can take place at four different levels,
namely (i) statically, with the source code; (ii) statically,
with the bytecode; (iii) dynamically, with the bytecode; and
(iv) dynamically, on a specific virtual machine and archi-
tecture. This paper focuses on the fourth category by an-
alyzing the performance of Java-based RCPs on a specific
JVM, computer architecture, and operating system kernel.
The performance measurements that result from benchmark
execution are further explained in light of JVM behavior
profiles. Building on the insights developed by Heydon and
Najork [17], this paper also examines how excessive heap al-
location and the frequent execution of the garbage collector
can impact the performance of intra-node communication.

3. BENCHMARKING FRAMEWORK
Figure 2 describes the ExperimentCampaign that executes

N trials of benchmark B when it is configured to use com-
munication primitive P . Line 1 of Figure 2 respectively
initializes the tuples (i.e., ordered lists) of response times

2Since the metric prefix “nano” (10−9) denotes a number that
is smaller than the one described by the “micro” (10−6) prefix,
we use the term nano benchmark to refer to a benchmark that is
smaller than its macro counterpart. We selected this descriptor
instead of the previously used term kernel benchmark [1] since
“kernel” now commonly refers to a part of an operating system.



Algorithm ExperimentCampaign(B,P,N)
Input: Benchmark B;

Remote Communication Primitive P ;
Number of Experiment Trials N ;

Output: Response Time Tuple R;
Network Consumption Tuple W;
JVM Profile Tuple J

1. R ← ∅; W ← ∅; J ← ∅;
2. StartServer(B,P )
3. Pause()
4. StartPacketCapture(B,P )
5. for i ∈ {1, . . . , N}
6. do {R(B,P ), J(B,P )} ← Execute(B,P )
7. R ← R⊎ 〈R(B,P )〉
8. J ← J ⊎ 〈J(B,P )〉
9. Pause()
10. StopServer(B,P )
11. W (B,P ) ←StopPacketCapture(B,P )
12. W ← 〈W (B,P )〉
13. return R,W,J

Figure 2: The ExperimentCampaign Algorithm.

(R), network resource consumptions (W), and JVM behav-
ior profiles (J ) so that they can be populated with measure-
ments during the execution of the experiments. The socket
or XML-RPC server starts on line 2 and then the framework
pauses so that the server can enter a quiescent state and the
packet capture tool can initialize. Lines 5 through 9 ensure
that (i) benchmark B executes for N trials, (ii) the response
time and JVM profiles are properly stored for later analy-
sis, and (iii) the server pauses in preparation for the next
benchmark trial. These lines use the order preserving union
operator, denoted ⊎, to add data values to R and J . In an
attempt to minimize the startup time of the framework, the
server and the packet capture tool run continuously for the
duration of the N trials (exploratory experiments indicated
that all of the empirical results were not sensitive to this op-
timization). Finally, ExperimentCampaign terminates when
line 13 returns the evaluation metrics.
Table 1 lists the four nano benchmarks that are simi-

lar to those that are described by Allman [2]. These nano
benchmarks perform minimal computation on the side of the
server in order to provide a baseline for the response time
measurements. The SS benchmark uses a client that sends
and receives a single data value, which is either an integer or
a string. The client for SV sends a single data value and re-
ceives a vector of values. The VS benchmark has a client that
sends a vector of values and receives a single value. Finally,
the VV benchmark instructs the client to send and receive a
vector of data values. During ExperimentCampaign the size
of the vector of values, denoted size(V ), is fixed throughout
every execution trial of SV, VS, and VV.
This paper also uses the four micro benchmarks listed in

Table 2. After GRAB’s server randomly generates a vector of
integers, the client transmits a single integer to the server.
This benchmark is of type SS since we configured the GRAB

server to use the client’s integer as an index into its vector
and subsequently return the resulting integer. FACT is an
SV benchmark because it sends an integer value to a server
that enumerates all the factors of the integer and returns a
vector of integers. The type VS benchmark called GCD sends
a vector of integers to a server that calculates the greatest
common divisor and returns this integer to the client. The

Experiment Sent by client Received by client
SS Single value Single value
SV Single value Vector
VS Vector Single value
VV Vector Vector

Table 1: Nano Benchmarks.

Experiment Sent by client Received by client
GRAB (SS) Single value Single value
FACT (SV) Single value Vector
GCD (VS) Vector Single value
REV (VV) Vector Vector

Table 2: Micro Benchmarks.

final benchmark is REV, which sends a vector of integers to
the server. This benchmark is of type VV because the server
reverses the order of the elements within the vector and
returns this new vector back to the client.

4. EXPERIMENT GOALS AND DESIGN

4.1 Evaluation Metrics
The primary goal of the experiments is to measure the

time overhead and network consumption associated with
socket and XML-RPC communication. Equation (1) de-
fines R(B,P ), the response time associated with the execu-
tion of a benchmark B from either Table 1 or 2 and a re-
mote communication primitive P that is either sockets (S)
or XML-RPC (X). For instance, R(GCD, X) denotes the re-
sponse time for the execution of the GCD benchmark with the
XML-RPC primitive. Equation (2) describes R∆(B,P, P ′),
the change in response time when we replace communica-
tion primitive P with primitive P ′. Next, Equation (3)
defines R%

∆(B,P, P ′), the percent change in response time
when the benchmark B uses P ′ instead of P . For exam-
ple, R%

∆(FACT, S,X) stands for the percent change in response
time when FACT uses XML-RPC rather than sockets. Since
it is often useful to calculate how response time changes
when P ′ replaces P for a set of benchmarks designated β

(e.g., all of the micro benchmarks in Table 2), Equation (4)
characterizes R̄%

∆(β, P, P ′), the average percent change in re-
sponse time over all of the benchmarks B ∈ β.

R(B,P ) = Tcomplete(B,P )− Tstart(B,P ) (1)

R∆(B,P, P
′) = R(B,P

′)−R(B,P ) (2)

R
%
∆(B,P, P

′) =
R∆(B,P, P ′)

R(B,P )
× 100 (3)

R̄
%
∆(β, P, P ′) =

∑

B∈β

R
%
∆(B,P, P

′)

|β|
(4)

The benchmarking framework measures response time
with timers that operate at two distinct levels of granular-
ity. We leverage the operating system tool /usr/bin/time
to record the coarse granularity time overheads. These oper-
ating system-based response times include the time required
to start the client, communicate with the server, and shut-
down the client. The benchmarks also use Java language
instrumentation within the client’s source code to measure



the fine granularity response times. The instrumentation
records Tstart(B,P ) before calling the server and then saves
Tcomplete(B,P ) after the server finishes the computation.
Unless specified otherwise, this paper always reports the

change and percent change in response time when the socket
communication primitive is replaced with XML-RPC. For
each of the benchmarks described in Section 3, the re-
sults analysis in Section 5 always reports R∆(B,S,X) and
R%

∆(B,S,X). A positive value for R%
∆(B,P, P ′) indicates that

response time increased when B used primitive P ′ instead
of P . Alternatively, a negative value signals a decrease in re-
sponse time when B uses P ′ rather than P . The framework
also use the jvmstat and hprof tools to generate each JVM
behavior profile in J . Finally, the benchmarking framework
employs Roubtsov’s object sizing technique [29] to calculate
the size of the method parameters and return values and, for
each benchmark B and primitive P , it appends these values
to the appropriate profile in J .
Even though our focus is on intra-node communication,

the use of HTTP and TCP/IP requires the client and server
to transfer messages across the network interface. Therefore,
we configured the tcpdump tool to receive and attempt to
record all of the packets that are transmitted across the
network interface and we use the capinfos tool to analyze
the captured packets. The data reported by tcpdump and
capinfos includes the (i) total number of packets received
by the kernel filter, (ii) number of packets captured and
stored for later analysis, and (iii) average packet size. Due
to the high rate of data transfer, the number of captured
packets can be much lower than the number of packets that
were received by the tcpdump filter. Since capinfos can
only analyze the captured packets, it is not always possible
to accurately measure the total amount of network resources
that the benchmark consumed during execution.
The benchmarking framework estimates the total net-

work consumption in bytes, defined as W (B,P,Φc,Φr) in
Equation (5), by multiplying the average size of the cap-
tured packets by the total number of packets received by
the tcpdump filter. Equation (5) uses Φc and Φr to respec-
tively stand for the sets of captured and received packets.
Moreover, this equation uses the size function to return the
size in bytes for a given packet φ ∈ Φc. W (B,P,Φc,Φr) is
only an estimate of the actual network consumption since
it assumes that all packets that were received, but not cap-
tured and analyzed, are of the average size of those packets
φ ∈ Φc. While the use of W (B,P,Φc,Φr) is a reasonable
first step towards approximating network consumption, Sec-
tion 7 suggests ways to avoid this estimation of network re-
source consumption and thus improve future empirical stud-
ies of Java’s remote communication primitives.

W (B,P,Φc,Φr) =

∑

φ∈Φc

size(φ)

|Φc|
× |Φr| (5)

4.2 Experiment Design and Analysis Methods
All experiments were conducted on a GNU/Linux work-

station with kernel 2.6.12-1.1372, a dual-core 3 GHz Intel
Pentium 4 processor, 1 GB of main memory, and 1 MB of
L1 cache. The workstation used a Serial ATA connection
to the hard drive and CPU hyper-threading was enabled in
order to support thread-level parallelism. The experiments
use a JVM version 1.5.0 02 which was set to operate in Java
HotSpotTMclient mode with a 64 MB heap. Since our fo-

cus is on intra-node communication, we ran the benchmark
client and server in separate JVMs on the same computa-
tional node. If desired, the benchmarking framework can
be configured so that the client and server execute on sep-
arate nodes. We implemented XML-RPC communication
with Apache XML-RPC 2.0 and the socket-based bench-
marks use the classes provided by the java.net package.
For the results in Section 5, we initialized ExperimentCam-
paign so that N = 10. We also set size(V ) = 5 in order to
produce the empirical results described in Section 5.1.

Section 5 analyzes the N response time measurements in
R with descriptive statistics such as the arithmetic mean,
denoted Rµ(R, B, P ) and defined in Equation (6). Figures 3
through 5 graphically depict the value of Rµ(R, B, P ) by the
height of the corresponding bar. We also measure the dis-
persion of theN response times in the tupleR by calculating
the standard deviation, designated as Rσ(R, B, P ) and de-
fined in Equation (7). The graphs in Figures 3 through 5
use an error bar to demarcate the range of values in the
closed interval [Rµ(R, B, P ) − Rσ(R, B, P ), Rµ(R, B, P ) +
Rσ(R, B, P ]. Finally, Figures 3 through 5 use a diamond at
the top of a bar to signal that the value of Rσ(R, B, P ) is
too small to graphically present.

Rµ(R, B, P ) =

∑

R(B,P )∈R

R(B,P )

|R|
(6)

Rσ(R, B, P ) =

√

√

√

√

√

∑

R(B,P )∈R

(R(B,P )−Rµ(R, B, P ))2

|R|
(7)

Whenever the remote communication primitives demon-
strate performance characteristics of the greatest similarity,
we also calculate a mean confidence interval and perform a
mean difference hypothesis test. Within a group of simi-
lar benchmarks β, we perform additional statistical analysis
for a benchmark B ∈ β and the two primitives P and P ′

whenever (i) R(B,P ′)−R(B,P ) is the smallest or (ii) either
R(B,P ′) or R(B,P ) has the largest standard deviation. For
instance, the results in Figure 3(a) prompted us to compare
(i) S-SS to X-SS because .277 − .17 = .107 is the smallest
difference between two benchmarks and (ii) S-VV to X-VV
since X-VV shows the largest standard deviation. Table 5
summarizes the confidence intervals that we calculated.

We apply these additional statistical analyses with the ob-
servations that (i) the response times adhere to an interval
measurement scale, (ii) the N samples within R are inde-
pendent, and (iii) the variances of the response times for the
two different communication primitives are not equal. Ob-
servation (i) is justified because the difference between two
response time measurements is meaningful. That is, if re-
sponse time is measured in seconds and we have R1(B,P ) =
.15 and R2(B,P ) = .10, then we can accurately say that R1

is .05 seconds slower than R2. We judge that observation (ii)
is valid because ExperimentCampaign includes configurable
pauses between each execution trial of a benchmark (we set
the pause to five seconds for all of the empirical results in
Section 5, although this time period is a configurable pa-
rameter of the framework). Since the response time results
also demonstrate that the variances were not always exactly
equal, as stated in observation (iii), we employ the Welch’s
approximate t-test rather than the traditional t-test.
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Figure 3: Nano Benchmarks Using the (a) Operating System-Based and (b) Language-Based Timers.

For a benchmark B and two remote communication prim-
itives P and P ′, we formulate the null hypothesis as H0 :
Rµ(B,P ) = Rµ(B,P ′). A rejection of H0 suggests that
communication primitives P and P ′ have different response
time characteristics and, all other factors being equal, we
would prefer the primitive with the lower response time val-
ues. Since we configured the t-test with a significance level
of .01 (i.e., α = .01), the data in Table 5 represents the 99%
confidence interval (CI) for the arithmetic mean of the N

response times. For each response time mean in the confi-
dence interval [l, u], we can be 99% certain that the mean
of the response time values from subsequent experiments
will fall between the lower bound l and the upper bound
u. Therefore, small confidence intervals suggest that our
benchmarking framework generates empirical outcomes in a
repeatable and predictable manner.

5. EXPERIMENTAL RESULTS

5.1 Response Time
Nano Benchmarks. Figure 3(a) presents the results

from measuring response time with the operating system-
based timer when size(V ) = 5. The most important trend
to note is that socket communication is always faster than
XML-RPC. For instance, the average across all benchmarks
for sockets was 0.17 seconds compared to 0.283 seconds for
XML-RPC. It is further evident that R%

∆(VV, S,X)= 70.58%
and there is no overlap in the standard deviation for each
benchmark. As shown in Table 5, the socket implementa-
tion of SS had a confidence interval of [0.17,0.17], while the
interval for XML-RPC’s response times was [0.269,0.293].
These results are significant because the confidence inter-
vals do not overlap and the result of the t-test was to reject
the null hypothesis. Lastly, the summary information in
Table 5 also demonstrates that sockets and XML-RPC have
statistically different response times for the VV benchmark.
Figure 3(b) provides the measurements obtained with the

language-based timer. These results suggest that sockets
are both faster and more predictable than XML-RPC. For
example, the average across all benchmarks was 0.00665
seconds for sockets and 0.089025 seconds for XML-RPC.
We also observe that R%

∆(VV, S,X)= 278.48% and there is
no overlap in the standard deviation for each benchmark’s
time overhead. Finally, Table 5 reveals that the communi-
cation primitives have different performance characteristics

Descriptor size(V ) (count) size(V ) (bytes)
Small 5 140

Medium 50 960
Large 500 8600

Table 3: size(V) Variation.

since (i) the socket implementation of VV has a confidence
interval of [0.023,0.025], (ii) XML-RPC has an interval of
[0.072,0.107], and (iii) the t-test rejects the null hypothesis.

Micro Benchmarks. Figure 4(a) gives the results from
measuring response time with the operating system-based
timer when size(V ) = 5. Across all micro benchmarks,
we note that the mean time overhead for sockets was 0.17
seconds, the XML-RPC primitive yielded an average re-
sponse time of 0.702 seconds, and we further calculate
that R̄%

∆(B,S,X)= 312.94%. For the REV benchmark, Ta-
ble 5 shows that the t-test rejects H0 and that sockets
and XML-RPC have confidence intervals of [0.17,0.17] and
[1.902,2.039], respectively. While Table 5 indicates that the
confidence intervals for GRAB’s response times do overlap, the
t-test still rejects the null hypothesis and thus we judge that
the primitives have different time overheads. In this case,
the t-test rejects H0 because the socket implementation of
GRAB exhibits no variability in the response time metric.

Figure 4(b) depicts the results that were obtained from
measuring response time with the language-based timer.
The average across all benchmarks for sockets was 0.002375
seconds and 0.506375 seconds for XML-RPC and as such
R%

∆(B,S,X)= 213.11%. Table 5 confirms the same empiri-
cal trend: for the GRAB, GCD, and REV benchmarks and the
language timers, sockets are faster than XML-RPC in a sta-
tistically significant manner. In summary, the nano and
micro benchmarks indicate that the transmission of small
vector and integer parameters (i.e., size(V ) = 5) causes the
socket communication primitive to exhibit response times
that are lower and less variable than XML-RPC’s.

5.2 Vector Size Variation
Since real-world Java applications that perform intra-

node communication may transmit vectors of different sizes,
we conducted additional experiments to determine how the
variation of vector size impacted response time. Table 3
gives the different values of size(V ) for each execution of
ExperimentCampaign. Figure 5(a) furnishes the results from
varying size(V ) with SV. The experiments indicate that
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Figure 4: Micro Benchmarks Using the (a) Operating System-Based and (b) Language-Based Timers.

R%
∆(SV, S5, S500)= 4069.00% and R%

∆(SV, X5, X500)= 53.39%.3

The very low response time associated with socket-based
communication when size(V ) = 5 causes the large percent
increase when S500 is executed instead of S5. Yet, calcula-
tions with and study of the results in Figure 5(a) reveal that
R%

∆(SV, S500, X500)= 141.60% and thus sockets still exhibit
lower and less dispersed response times than XML-RPC.
The summary results in Table 5 confirm this trend since
sockets and XML-RPC have respective confidence intervals
of [0.050,0.058] and [0.106,0.156] and the t-test rejects H0.
Overall, Figures 5(a) through 5(c) and Table 5 support the
conclusion that sockets are faster than XML-RPC when the
maximum value of size(V ) is less than or equal to 500.
Table 4 gives the results from experiments that increased

size(V ) to very large values during the execution of VV.
Overall, sockets are faster than XML-RPC when size(V ) =
5000, whereas XML-RPC demonstrates a slight perfor-
mance advantage when the vectors have 10000 items. Fur-
ther analysis reveals that R%

∆(VV, S5000, X5000) =16.44% and
the two primitives have overlapping confidence intervals of
[0.292,0.304] for sockets and [0.292,0.401] for XML-RPC.
Even though these intervals overlap, the result of the t-
test was to reject the null hypothesis and we judge that
the socket primitive has better performance. Figure 6 pro-
vides an empirical cumulative distribution function (ECDF)
that explains why the two communication primitives have
different response time characteristics when VV is executed
with size(V ) = 5000. The ECDF curve represents the prob-
ability that the response time is less than or equal to a
specific value on the horizontal axis. Figure 6 shows that
R(VV, S5000) is always less than .309 seconds while only 80%
of the R(VV, X5000) values fall between .316 and .35 seconds.
Executing VV with size(V ) = 10000 exposes the fact

that R%
∆(VV, S10000, X10000) =−12.54% and thus XML-RPC

exhibits lower response times than sockets. The confi-
dence intervals for sockets and XML-RPC were respectively
[0.588,0.608] and [0.469,0.577] and the result of the t-test
was to reject the null hypothesis. Table 4 also shows that
the results for size(V ) = 50000 were more pronounced and
thus R%

∆(VV, S50000, X50000) =−90.96%. The confidence inter-
val for the responses times of the socket implementation was

3In the remainder of this paper the notation Pk denotes the use
of remote communication primitive P to transmit a vector with
k entries. For example, S500 means that the socket primitive
transmitted a vector V of 500 values (i.e., size(V ) = 500).

size(V ) size(V ) (bytes) R(VV, S) (sec) R(VV, X) (sec)
5000 80,520 0.298 0.347
10000 161,000 0.598 0.523
50000 927,720 18.784 1.697

All Response Times Calculated by the Language-Based Timers

Table 4: Response Time with Very Large Vectors.

[18.078,19.490], the interval for XML-RPC was [1.616,1.777],
and the t-test rejected the null hypothesis. These results
clearly demonstrate that sockets perform worse than XML-
RPC when transmitting large parameters and return values.

We explored a wide range of parameter settings in
order to ensure that this marked performance change was
not due to an improper configuration of sockets. For
instance, increasing the size of the socket server’s JVM
heap to 256 MB or modifying the size of the socket’s
send and receive buffers with the setSendBufferSize

and setReceiveBufferSize methods provided by
java.net.Socket did not change the results in Ta-
ble 4. We also used the setPerformancePreferences(CON,

LAT, BAN) to modify the performance preferences for the
socket primitive and this did not change the results for
the socket-based version of VV. The parameters CON, LAT,
and BAN respectively indicate the relative importance
of short connection time, low latency, and high band-
width. Yet, response times did not differ when we called
setPerformancePreferences(0,1,0) in order to favor
low latency over connection time and bandwidth. This
exploration strengthens the conclusion that sockets are
truly slower than XML-RPC when transferring bulk data.

5.3 Virtual Machine Behavior
This paper uses JVM behavior profiles to explain the re-

sponse time characteristics revealed in Sections 5.1 and 5.2.
In particular, we focus on a benchmark’s heap allocation
behavior and the execution of the JVM’s garbage collector.
The JVM heap is divided into several regions respectively
known as permanent, old, and young. The young space is
further sub-divided into three regions known as eden, sur-
vivor one (S1), and survivor two (S2). We record the number
of times the collector performs a full collection over all three
regions and a young collection for eden, S1, and S2. While
young GC (YGC) events often occur more frequently than
the full GC (FGC) events, a full GC normally takes longer.
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Figure 5: Varying size(V) for the (a) SV, (b) VS, and (c) VV Nano Benchmarks.
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Figure 6: Response Time for VV when size(V ) = 5000.

An intuitive explanation of how we implemented the
socket and XML-RPC benchmarks aids in understanding
the meaning of the behavior profiles. During the transfer of
parameters and return values, a socket benchmark uses the
writeChars method of the java.io.DataOutputStream and
the readLine operation from java.io.DataInputStream.
While a socket client calls writeChars to send data to a
server and readLine to receive the server’s return value, the
server uses readLine to get the parameters and writeChars

to transfer the return value. Before transmission, an XML-
RPC client encodes the Java object parameters in the
character-based XML format, whereas the server must de-
code the XML message in order to transform the text back
into objects. The XML-RPC server and client reverse this
procedure to respectively handle the encoding and decoding
of the return value. Overall, both of the benchmarks process
characters and strings since they use a textual representa-
tion for the parameters and return values. Yet, the frequent
conversion between Java objects and text and the use of
strings and characters can often cause the benchmarks to
inefficiently allocate many data values to the heap [21].
Figure 4 shows that the REV benchmark takes longer to

complete when it uses XML-RPC instead of the socket prim-
itive. This is due in part to the fact that the socket primitive
does not cause any YGC or FGC events to occur. The XML-
RPC primitive forces 122 YGC events that consume a total
of .059 seconds and 5 FGC events that increase response
time by .123 seconds. Yet, the XML-RPC server must also
perform additional string processing in order to reverse the
input vector and this increases the response time as well.
Table 4 shows that the execution of VV can yield very high re-
sponse times for sockets and Table 6 reveals that sockets and
XML-RPC have similar GC behavior when size(V ) = 5000

and size(V ) = 10000. For example, S-VV and X-VV both
avoid a full garbage collection when 5000 objects are trans-
mitted. Even though sockets do require more GC activity
when size(V ) = 10000, the YGC and FGC events only in-
crease response time by .073 seconds.

Tables 6(a) and (b) indicate that S-VV’s JVM performs
1645 YGC and 663 FGC events when size(V ) = 50000,
while X-VV only causes 123 YGC and 5 FGC events. The
10.375 seconds associated with performing all of the full GC
events represent 55.23% of the execution time for S-VV. In
contrast, the FGC events performed by the X-VV JVM cor-
respond to 8.43% of the benchmark’s total execution time.
The use of the JVM heap profiling agent, called hprof, re-
ports that the S-VV JVM allocates 152, 539 objects to the
heap while 1, 506, 476 objects are allocated by the X-VV
JVM. However, the S-VV benchmark allocates 710, 374, 184
bytes and the X-VV JVM only stores 54, 101, 312 bytes. At
the point of benchmark termination, S-VV has 4, 773, 224
bytes of live objects in the JVM heap and the X-VV heap
contains 7, 234, 520 bytes of live objects. Finally, the JVM
behavior profiles reveal that the java.net.Socket imple-
mentation allocates many char[] arrays while the XML-
RPC primitive relies upon instances of the high-performance
java.nio.CharBuffer. These results further support the
conclusion that S-VV is slow because (i) it allocates and sub-
sequently collects many more bytes than X-VV and (ii) sock-
ets in Java 1.5 do not take advantage of the fast character
buffers in Java’s “new input/output” (NIO) package.

5.4 Network Resource Consumption
Table 7 shows the network resource consumptions for the

nano benchmarks with size(V ) = 500. We do not report
consumption measurements for benchmarks that were exe-
cuted with large size(V ) values since very high data trans-
fer rates caused the tcpdump kernel filter to drop a signif-
icant number of packets and this could yield incorrect es-
timates for W . The most obvious trend to note is that
socket communication always generates more packets than
XML-RPC. Across all benchmarks, the average number of
packets received by the GNU/Linux kernel was 7222 for the
socket primitive and 380 for XML-RPC. We also observe
that the average packet size is smaller for sockets than XML-
RPC. Considering every benchmark, the mean of the aver-
age packet sizes is 86 bytes for the socket primitive and 802
bytes for the XML-RPC communication mechanism.

Using the approach and equations in Section 4.1, we calcu-
lated that W%

∆ (SS, S,X) =30.90%, W%
∆ (SV, S,X) =118.86%,

W%
∆ (VS, S,X) =−68.73%, and W%

∆ (VV, S,X) =−44.71%.
These percent increases suggest that socket communication



Instrumentation

Comparison CI for Sockets CI for XML-RPC Language System
R(SS, S5) vs R(SS, X5) [0.17, 0.17] [0.269, 0.293] X

R(VV, S5) vs R(VV, X5) [0.17, 0.17] [0.252, 0.328] X

R(VV, S5) vs R(VV, X5) [0.023, 0.025] [0.072, 0.107] X

R(REV, S5) vs R(REV, X5) [0.17, 0.17] [1.902, 2.039] X

R(GRAB, S5) vs R(GRAB, X5) [0.17, 0.17] [0.159, 0.191] X

R(GCD, S5) vs R(GCD, X5) [0.002, 0.003] [0.067, 0.104] X

R(REV, S5) vs R(REV, X5) [0.002, 0.004] [1.687, 1.834] X

R(SV, S500) vs R(SV, X500) [0.050, 0.058] [0.106, 0.156] X

R(VS, S500) vs R(VS, X500) [0.019, 0.042] [0.089, 0.148] X

R(VV, S500) vs R(VV, X500) [0.090, 0.119] [0.128, 0.201] X

R(VV, S5000) vs R(VV, X5000) [0.292, 0.304] [0.292, 0.401] X

R(VV, S10000) vs R(VV, X10000) [0.588, 0.608] [0.469, 0.577] X

R(VV, S50000) vs R(VV, X50000) [18.078, 19.490] [1.616, 1.777] X

For Each Row, the t-test Rejected H0 at a Significance Level of 0.01

Table 5: Summary Table for the Confidence Intervals and Hypothesis Tests.

consumes fewer network resources than XML-RPC for the
SS and SV benchmarks. As given in Table 7, the results
with VS and VV reveal that socket communication transmits
more data than XML-RPC. For instance, we estimate that
S-VS transmits a total of 13944 × 71.16 = 992, 255.04 bytes
whereas X-VS only transfers 360×861.67 = 310, 201.20 bytes
during execution. This outcome suggests that, at the packet
level, XML-RPC’s textual encoding of vectors can be more
space efficient than the Java serialization mechanism used
by sockets. However, the XML-RPC primitive might not
be suitable for interactive Java applications because it fre-
quently causes the transmission of very large packets (e.g.,
X-VV has an average packet size of 1455.90 bytes).

5.5 Threats to Validity
Any empirical study of the performance of local-remote

software systems must confront certain threats to validity.
During the empirical evaluation of communication primi-
tive performance we were aware of potential threats to va-
lidity and we took steps to control the impact of these
threats. Threats to internal validity concern factors that
would present alternative explanations for the empirical re-
sults discussed in Section 5. The first threat to internal
validity is related to the potential faults within the bench-
marking framework that Section 3 describes. We controlled
this threat by incorporating tools and libraries that are fre-
quently used by practitioners, such as tcpdump, capinfos,
jvmstat, hprof, and the java.net package. Since we have
repeatedly used these tools without experiencing errors or
anomalous results, we have a confidence in their correctness
and we judge that they did not negatively impact the valid-
ity of our empirical study. Moreover, Allman also leveraged
tools such as tcpdump without noticing problems that would
compromise his results [2]. We also tested each benchmark
in isolation in order to ensure that it regularly produced
meaningful outcomes. Finally, we controlled threats to in-
ternal validity by using the same workstation and preventing
additional user logins throughout experimentation.
Threats to external validity would limit the generalization

of our approach and the empirical results to new benchmarks
and execution environments. The experiments in this paper
only focus on the use of four nano and four micro bench-

marks and the performance measurements from these stud-
ies might be different from those produced by other nano,
micro, macro, combined, and application-specific bench-
marks. The experiments only evaluate sockets and XML-
RPC and thus they provide no direct insights into the be-
havior of local-remote systems constructed with other com-
munication primitives. Also, the client and server in the
current benchmarks exchange a limited variety of parame-
ters and return values. However, our framework supports
the integration of other benchmarks and this paper reports
on the results from using benchmarks that are similar to
those that were described by Allman [2]. Another threat
to external validity is related to the fact that the experi-
ments measure the performance of sockets and XML-RPC
in a single execution environment. This is because the com-
puter hardware, JVM, operating system kernel, and other
environmental factors were not varied during experimenta-
tion. Yet, it is our judgment that the execution environment
is representative of one that is frequently used during the
development and execution of a local-remote system.

Threats to construct validity concern whether the eval-
uation metrics accurately reflect the variables that the ex-
periments were designed to measure. We judge that the
response time metric is defined and measured in a fashion
that will be useful to individuals who implement applica-
tions that perform intra-node communication. While net-
work resource consumption is also a valuable metric, our
current tools do not always support the accurate measure-
ment of W (B,P ). As noted in Section 4.1, this is due to
the fact that the high rates of data transfer rapidly exhaust
the kernel buffer space that is reserved for packet capture.
Before conducting further experiments we will attempt to
control this threat to validity by modifying the GNU/Linux
kernel and/or enhancing existing packet capture tools.

6. RELATEDWORK
The focus of this paper connects to prior work in the areas

of the implementation of remote communication primitives
and the benchmarking of sockets and XML-RPC.

Communication Primitives. The micro-kernel is an
example of an operating system whose architecture was
driven by detailed empirical evaluations of communication



size(V ) YGC Events (count) YGC Time (sec) FGC Events (count) FGC Time (sec)
5000 16 .008 0 0
10000 63 .023 4 .050
50000 1645 .697 663 10.375

(a)

size(V ) YGC Events (count) YGC Time (sec) FGC Events (count) FGC Time (sec)
5000 14 .016 0 0
10000 27 .022 1 .020
50000 123 .695 5 .143

(b)

Table 6: VV’s Garbage Collection Behavior for (a) Sockets and (b) XML-RPC.

primitive performance [10, 22, 23]. Since interprocess com-
munication (IPC) was often the limiting factor in micro-
kernel performance, developers designed numerous bench-
marks and used response time results to guide the design of
IPC protocols [14, 22]. These studies are similar to the one
in this paper since we also use empirical results to motivate
the choice between primitives for intra-node communication.
Furthermore, Bershad et al. propose an interesting and effi-
cient mechanism to support intra-node communication with
lightweight RPCs [5]. While our focus is on modern oper-
ating systems, object-oriented languages, and virtual ma-
chines, the LRPC primitive was implemented for both the
Taos operating system and the DEC Firefly multiprocessor
[5] and a previous version of the Mach kernel [7]. Finally,
both Herder et al. and Karger have developed specialized
implementations and optimizations that improve the per-
formance of intra-node communication [15, 20]. In contrast
to these efforts, this paper considers the evaluation of prim-
itives that are already in wide use and reputed to be easy
to program, namely Java sockets and XML-RPC.
Sockets and XML-RPC. This paper is directly related

to Allman’s empirical analysis of the socket and XML-RPC
primitives [2]. Yet, this article is different than [2] because
it (i) reports benchmark results with more recent versions
of sockets and XML-RPC, (ii) solely focuses on experiments
where the client and server reside on the same node, (iii)
measures response time with OS and language-based timers,
and (iv) explains the results in light of JVM behavior. It
is interesting to note that the results of this paper contrast
with those reported by Allman. The previous work suggests
that sockets and XML-RPC have similar response time char-
acteristics for small transactions. However, the past exper-
iments with larger transactions show that sockets perform
up to an order of magnitude better than XML-RPC [2]. Our
experiments demonstrate that sockets outperformed XML-
RPC with smaller transactions but that at extremely large
transaction sizes XML-RPC performed significantly better
than sockets. We judge that the conflicting performance
characterizations could be attributed to the (i) different ex-
ecution environments (e.g., kernel, OS, and JVM), (ii) dif-
ferent versions of sockets and XML-RPC, and (iii) location
of the client and server JVMs. The future experimentation
described in Section 7 will support the resolution of the dif-
ferences between these two studies.

7. CONCLUSIONS AND FUTUREWORK
This paper describes a benchmarking framework that sup-

ports the empirical evaluation of intra-node communication

Benchmark Packets
Received

Packets
Captured

Avg Packet
Size (bytes)

S-SS 402 201 74.06
X-SS 360 180 108.28
S-SV 1180 518 121.14
X-SV 400 200 782.15
S-VS 13944 4008 71.16
X-VS 360 180 861.67
S-VV 13362 4044 78.83
X-VV 400 200 1455.90

All Benchmarks Use a Vector with 500 Values

Table 7: Network Resource Consumption.

with Java-based primitives. The presented method yields
quantitative results that characterize how and why sock-
ets and XML-RPC consume time overhead and network re-
sources. The use of the benchmarks in a specific execution
environment yielded interesting experimental results that
characterize the strengths and weaknesses associated with
sockets and XML-RPC. Section 5.1 reveals that, for all of
the benchmarks, socket-based communication outperforms
XML-RPC when size(v) = 5. Yet, the results in Section 5.2
point out that when the nano benchmarks perform bulk data
transfer, the performance of sockets degrades rapidly.

Section 5.3 further interprets the response time results in
light of the behavior of the JVM’s garbage collector. An
analysis of the JVM behavior profiles shows that sockets
incur additional time overhead because they trigger a sig-
nificant number of YGC and FGC events. Furthermore,
the results in Section 5.4 suggest that (i) sockets generate
a larger number of packets than XML-RPC and (ii) the av-
erage packet size created by the socket-based benchmarks
is smaller than the packet size produced by XML-RPC. In
conclusion, the results in this paper can serve as valuable
guides when selecting Java-based primitives for intra-node
communication. It is possible to extend our framework with
new communication primitives, benchmarks, and statistical
analysis techniques. Thus, future research, enabled by our
method of approach, can continue to develop a deeper under-
standing of both general-purpose primitives in languages like
Java (e.g., sockets and XML-RPC) and other customized
intra-node communication schemes (e.g., [15, 16, 32, 33]).

In future research, we will modify and/or re-configure the
GNU/Linux kernel and the packet capture tools, for instance
by adding larger buffers to store additional packets, in or-



der to more accurately characterize network resource con-
sumption. We also want to improve the presented work
by introducing multi-threaded clients and measuring bench-
mark throughput. We will further extend the benchmarks
so that they can transmit more realistic parameters and re-
turn values like complex Java objects and binary files. It
would also be useful to run both the current and additional
benchmarks on different architectures and platforms in or-
der to determine how the execution environment impacts
the performance results. Moreover, we will measure mes-
sage passing response time when the client and server exist
on separate machines. Since this communication will occur
between non-local JVMs, we will study the performance of
the primitives on congested and/or unreliable networks.
We intend to execute long running benchmark campaigns

that invoke a series of methods on the side of the server
while continuing to collect JVM behavior profiles. This will
enable us to identify the impact that HotSpotTMadaptive
optimization has on the performance of the communication
mechanisms. Additional research will also investigate al-
ternatives to socket and XML-RPC communication such as
Java-MPI [11, 19], Java RMI [12, 25], tuple spaces [4, 9, 36],
and JXTA [26, 31]. These alternatives will be compared
to sockets and XML-RPC in order to determine how each
communication method compares to the others in terms of
response time, network resource consumption, and JVM be-
havior. Ultimately, we want to extend our framework to
also include the customized communication primitives used
in other local-remote systems (e.g., [15, 16, 32, 33]).
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