
An Experimental Study of Methods for Executing Test Suites in
Memory Constrained Environments

Suvarshi Bhadra
Milcord LLC

sbhadra@milcord.com

Alexander Conrad, Charles Hurkes,
Brian Kirklin, Gregory M. Kapfhammer

Allegheny College
gkapfham@allegheny.edu

Abstract

Software for memory constrained mobile devices is often
implemented in the Java programming language because
the Java compiler and virtual machine (JVM) provide en-
hanced safety, portability, and the potential for run-time
optimization. However, testing time may increase substan-
tially when memory is limited and the JVM employs a com-
piler to create native code bodies. This paper furnishes
an empirical study that identifies the fundamental trade-offs
associated with a method that uses adaptive native code un-
loading to perform memory constrained testing. The exper-
imental results demonstrate that code unloading can reduce
testing time by 17% and the code size of the test suite and
application under test by 68% while maintaining the overall
size of the JVM. We also find that the goal of reducing the
space overhead of an automated testing technique is often
at odds with the objective of decreasing the time required
to test. Additional experiments reveal that using a complete
record of test suite behavior, in contrast to a sample-based
profile, does not enable the code unloader to make decisions
that markedly reduce testing time. Finally, we identify test
suite and application behaviors that may limit the effective-
ness of our method for memory constrained test execution
and we suggest ways to mitigate these challenges.

1 Introduction
The Java compiler and virtual machine provide enhanced

safety, portability, and the opportunity to perform run-time
optimization. Therefore, the Java programming language is
now a popular choice for implementing the software appli-
cations that execute on resource constrained mobile and em-
bedded devices [11, 14, 23]. In fact, Java is currently being
used in resource constrained embedded environments to im-
plement ad hoc and sensor networks [16], robots [1], XML
processors [2], HTTP servers [3] and numeric expression
evaluation and function graphing applications [4]. How-
ever, using Java in mobile and embedded devices is chal-
lenging because of the memory constraints inherent in these

execution environments. In an attempt to balance the com-
peting requirements of ample memory and battery lifetime,
engineers often restrict the size of physical memory since it
is often the “dominant energy consumer” [20]. For instance,
the recently developed SmartControl CS-210/211 single-
board computers by Snijder Micro Systems only contain 64
MB of RAM [2] while the T-Mobile G1 with Google An-
droid has 192 MB of RAM [5].

Even in light of these challenges, it is still important to
test a program in the setting in which it will run since hand-
helds and cell phones operate in a variety of complex ex-
ecution environments [7, 13]. Yet, the automated testing
of Java programs on mobile devices is challenging because
embedded Java virtual machines (JVMs) commonly limit
the size of the heap [11] and use a “just in time” (JIT) com-
piler to transform Java bytecode into time efficient native
code [2, 10, 19]. Unless additional steps are taken, small
JVM heap sizes may prevent the testing of a program from
either starting or running to completion [9]. While JVMs
that use a JIT can reduce the execution time of programs
by avoiding bytecode interpretation and exploiting the po-
tential for run-time optimization, dynamic compilation also
increases space overhead because the native code represen-
tation is larger than the corresponding bytecodes [23]. Fur-
thermore, if the JVM’s heap cannot continuously store a
significant part of the native code and data associated with
the test executor, test cases, and program under test, then
freeing memory with frequent garbage collector (GC) invo-
cations will markedly increase the time overhead of testing.

Methods for executing tests in memory constrained en-
vironments are necessary since even mobile devices with
sizable memories place limitations on the heap space (e.g.,
the T-Mobile G1 limits a program and a test suite to no more
than 16 MB of JVM heap space [11]). In fact, our prelimi-
nary empirical study revealed that the testing of a Java pro-
gram on a JVM with severely constrained heap resources
caused testing time to increase by 600% when compared to
a configuration with adequate heap resources [13]. Yet, if
the execution of all or a portion of the tests is omitted in an



Input

2-Method 
 Under Test

Output

3-Test 
 Oracle

Expected 
 Output

Verdict

1-Set Up 4-Tear Down

Figure 1. Executing a Test Case.

attempt to reduce the time required to test, then the qual-
ity of the program could be compromised. Alternatively, if
the test suite is not executed in the intended execution set-
ting, then the tests are less likely to reveal defects related to
the program’s interaction with the embedded environment.
It may also be prohibitively expensive to avoid excessive
heap consumption by repeatedly starting the JVM, running
the next test case, and then shutting down the JVM.

In light of theses concerns, our previous work described
a testing technique that uses adaptive code unloading to
monitor the behavior of the test automation tool and unload
certain native code bodies [13]. Building upon methods de-
signed by Zhang and Krintz [23], our testing approach mon-
itors the execution of a Java program and its test suite and
produces either a sample-based or exhaustive profile of pro-
gram behavior. Using this behavior model, the JVM identi-
fies which native code bodies are used the least during the
current execution of the test suite and are thus unlikely to
be needed during the remainder of testing. Finally, the code
unloader can remove these infrequently used native code
bodies from the JVM’s heap, thereby making room for more
data, reducing the amount of time spent performing garbage
collection tasks intended to free memory, and subsequently
decreasing the time overhead of automated testing.

This paper is distinguished from our prior work because
it extends the preliminary empirical study with new visual-
izations and analyses that enhance the understanding of the
trade-offs associated with memory constrained testing. Us-
ing six case study applications, we measure the time over-
head of test suite execution and the size of both the JVM
process and the native code bodies. After reporting on base-
line experiments that justify the need for methods to support
testing in memory constrained environments, we compare
six different test execution techniques that use code unload-
ing. Leveraging graphs that pinpoint the variation in code

{S, X} − {GC, TM} = 〈C, UC, U, H〉

Parameter Meaning
C initial GC period (GC cycles or secs)

UC initial unload freq (GC cycles or secs)
U non-initial unload freq (GC cycles or secs)
H heap residency threshold (%)

(a)

{S, X} − CS = 〈Zinit, Zincr, UCS〉

Parameter Meaning
Zinit initial code cache size (bytes)
Zincr code cache increment size (bytes)
UCS unload session resize trigger (count)

(b)

Figure 2. Code Unloading Configurations.

size and tables that summarize the general trends, this paper
(i) identifies the system configurations that are best able to
reduce the time and space overhead of testing and (ii) high-
lights the limitations of the presented approach.

2 Automated Testing with Code Unloading
In order to ensure that this paper is self contained, this

section reviews the basics of automated testing with code
unloading (see [13, 23] for more details). As shown by
the boxes in Figure 1, the execution of each test case in-
volves the use of “set up” and “tear down” methods that
respectively run before and after the testing of the desired
method. Beyond storing the native code bodies associated
with both these functions and the test automation frame-
work, the JVM must also use its heap to store various data
structures (e.g., the circles representing method input and
output and the expected output and verdict of each test or-
acle). Since the garbage collector already controls the data
and the unmanaged native code bodies may consume a con-
siderable amount of memory, our testing tool unloads meth-
ods that may not be needed during the remainder of testing.

Any memory constrained testing technique that uses
code unloading must address the questions what code must
be unloaded? and when should code be unloaded? [23].
As the test suite runs, the JVM’s native code unloader cre-
ates either sample-based (denoted S) or exhaustive (denoted
X) profiles of application behavior. Upon invocation by the
JVM, the unloader consults these profiles and identifies the
least frequently used native code bodies. The testing frame-
work’s JVM decides when to invoke an unloading technique
by using timers (denoted TM) or triggers that focus on either
garbage collection behavior (denoted GC) or the variation in
code cache size (denoted CS) [23].

The TM strategy unloads code at a regular interval that is
specified when program testing first begins. Alternatively,
the GC technique performs code unloading when garbage
collection occurs and the heap residency exceeds a specified
threshold. The CS approach stores the native code bodies in
a fixed size code cache and it clears and resizes this storage
buffer when its space is exhausted. As in our previous work,



Name GC CS TM
UniqueBoundedStack (UBS) 〈4, 1, 1, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉

Library (L) 〈5, 1, 3, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
ShoppingCart (SC) 〈3, 1, 1, 0.0〉 〈49370, 512, 5〉 〈2, .5, 1, 0.0〉

Stack (S) 〈4, 1, 1, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
JDepend (JD) 〈8, 1, 4, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
IDTable (ID) 〈1, 1, 3, 0.0〉 〈65536, 8192, 5〉 〈2, .5, 1, 0.0〉

Figure 3. Code Unloading Configurations for the Jikes RVM.

Name Min Size (MB) # Tests # Failures Console Output? NCSS
UniqueBoundedStack (UBS) 8 24 1 Yes 362

Library (L) 8 53 14 Yes 551
ShoppingCart (SC) 8 20 0 Yes 229

Stack (S) 8 58 0 Yes 624
JDepend (JD) 10 53 0 No 2124
IDTable (ID) 11 24 0 Yes 315

Figure 4. Characteristics of the Case Study Applications and Test Suites.

this paper studies the potential of six code unloading tech-
niques (i.e., S-GC, X-GC, S-CS, X-CS, S-TM, and X-TM) to
make testing more time and space efficient. For example,
S-GC indicates that the JVM will use a sampled behavior
profile to unload code according to the GC trigger.

Figure 2(a) shows that the GC and TM methods have
configuration tuples where the first three parameters (C,
UC, and U ) denote GC cycles for both of the GC techniques
and seconds for the TM methods. A configuration of S-GC
or X-GC is described by the tuple 〈C, UC, U, H〉 where C

indicates how many garbage collection cycles are assumed
to occur throughout a test suite’s initialization phase. Dur-
ing the first C cycles, code unloading will happen every UC
cycles as long as the heap residency is above the thresh-
old specified by H . Once C cycles have occurred, code
unloading will take place every U cycles. For instance,
〈4, 1, 2, 0.0〉 would configure S-GC or X-GC so that the first
four GC cycles are assumed to occur during program startup
and thus code unloading happens every cycle regardless of
the residency of the JVM heap. After four cycles of garbage
collection, code unloading will take place every two cycles.
The S-TM and X-TM code unloading techniques could be
described in an analogous fashion. For the TM method, the
tuple 〈2, 1, 5, 0.2〉 indicates that the first two seconds of test-
ing are seen as part of the initialization phase during which
code will be unloaded every second if the heap residency is
greater than 20%. After the first two seconds, the JVM will
perform code unloading every five seconds.

Figure 2(b) shows that a configuration of S-CS or X-CS is
described by the tuple 〈Zinit, Zincr, UCS〉 where Zinit is the
initial size of the code cache, Zincr is the amount by which
the code cache grows, and UCS is the number of unloading
sessions that must occur before the code cache is increased
in size. As an example, the tuple 〈49370, 512, 5〉 describes
a code unloading strategy where the initial size of the code
cache is 49, 370 bytes. When space in the code cache is
exhausted and code unloading occurs five times, this JVM
will increase the size of the entire cache by 512 bytes.

3 Experiment Goals and Design
We only report a few relevant points about the experi-

ment design since it is similar to the one from our prelim-
inary experiments [13]. For a program P and test suite T ,
we respectively measured space overhead before and after
the use of code unloading, SB(P, T ) and SA(P, T ), and
computed the reduction and percent reduction in the size
of both the native code and JVM process, as defined in
Equations (1) and (2). We also measured the time over-
head reduction, TR(P, T ), and the percent reduction of time
overhead, T %

R (P, T ). The experiments use a Jikes Research
Virtual Machine (RVM) x86 version 2.2.1 that includes the
code unloading extensions from [23]. In conformance to
our prior experiments, Figure 3 describes the different Jikes
RVM configurations that we selected to run the tests. While
we picked these tuples after performing a manual, yet sys-
tematic, parameter study it is possible that they do not rep-
resent the best configurations for the chosen applications.

SR(P, T ) = SB(P, T ) − SA(P, T ) (1)

S
%
R (P, T ) =

SR(P, T )

SB(P, T )
× 100 (2)

As shown in Figures 4 and 5, the Jikes RVM ran in
two separate memory configurations called Min and Full.
The Min configuration was empirically identified to be the
smallest heap size that would allow the program’s tests to
execute without producing out of memory errors and the
Full configuration was fixed at a 32 MB maximum heap
size. The Min RVM is meaningful because it represents
the type of memory constrained environment that is com-
mon when testing occurs on an embedded device. For each
case study application and JUnit 3.8.1 test suite, Figure 4
also records the number of failing tests and whether or not
the test suite produces console output since these behaviors
could contribute to the time overhead required to execute
the tests. Finally, we used JavaNCSS 21.41 to calculate the
number of non-commented source statements (NCSS) for
the combined source code of the tests and the applications.



4.276

10.644

3.686
5.196

21.108

3.376

UBS L SC S JD ID
0

5

10

15

20

25
UBS L SC S JD ID

Application, Min RVM

E
x
e
c
u
t
i
o
n

T
i
m
e

HsecL

(a)

UBS L SC S JD ID
Application, Full RVM

1

2

3

4

5

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL

UBS L SC S JD ID

0.47 0.52 0.468 0.48

3.67

0.688

(b)

UBS L SC S JD ID
Application, Min RVM

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

UBS L SC S JD ID

42.75 44.229143.166742.3667
46.799

44.5333

(c)

UBS L SC S JD ID
Application, Full RVM

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

UBS L SC S JD ID

39.6667
35. 35.

31.8

58.5333

46.3333

(d)

UBS L SC S JD ID
Application, Min RVM

25000

50000

75000

100000

125000

150000

175000

C
o
d
e
S
i
z
e

HKBL

UBS L SC S JD ID

60463.9
75648.7

52771.2
65030.1

148676.

104438.

(e)

UBS L SC S JD ID
Application, Full RVM

50000

100000

150000

200000

250000

C
o
d
e
S
i
z
e

HKBL

UBS L SC S JD ID

136004.
147080.

128820.
143808.

157492.

202063.

(f)

Figure 5. Baseline Measurements for: Average Execution Time - (a) Min and (b) Full; Average RVM
Process Size - (c) Min and (d) Full; Average Method Code Body Size - (e) Min and (f) Full.

We executed each test suite on every application five
times in order to compute arithmetic means and standard de-
viations. During experiments with the Jikes RVM that did
not perform code unloading, the sequence of native code
body sizes did not change across the five executions. For
the code size measurements produced by this Jikes RVM,
we report the standard deviation from the average memory
consumption during a single trial. Whenever necessary, the
bar charts in this paper use error bars to represent standard
deviations. A diamond that appears at the top of a vertical
bar without an error bar indicates that the standard devia-
tion from the average was very small. For the results de-
picted in Figures 5 and 10, we adopt the convention that
dark shaded bars represent a standard deviation from the
average of a single trial and light shaded bars stand for a
standard deviation from the average of all the trials. Finally,
when one code unloading technique produces empirical re-
sults similar to another approach, we select the best strategy
according to the following criteria: (i) the smallest potential
time and space overhead (i.e., prefer S to X), (ii) the small-
est variability (i.e., favor small standard deviations) and (iii)
the smallest average native code body size.

4 Experimental Results
Baseline Performance. Figure 5 presents the baseline

performance measurements for all of the evaluation metrics
and a Jikes RVM that runs in both the Min and Full configu-
rations without the benefit of code unloading. As expected,
the Full RVM’s execution time is significantly less than the

Min RVM. This is due to the fact that the Min RVM must
perform a considerable amount of memory management in
order to operate in the resource constrained environment.
For the application with the largest NCSS, the process size
of the Full RVM is larger than the size of the RVM that exe-
cutes in the Min configuration. As such, JD causes the Full
RVM to consume on average 58.5 MB and the Min RVM to
use 46.7 MB. We attribute this outcome to the fact that the
Full configuration allows the Jikes RVM to use the 32 MB
heap to store more of JD’s code bodies and data structures.
Yet, for the smaller NCSS programs (e.g., UBS, L, SC, S,
and ID), there is less need for the RVM to take advantage of
the larger heap and thus the Min and Full process sizes are
relatively similar when we consider the error bars.

The bar charts in Figure 5 also reveal that the average
size of the native code stored by the RVM is larger in the
Full configuration. For example, JD exhibits an average
code size of 157, 492 KB in the Full RVM and 148, 676
KB in the Min RVM. Since [23] notes that the code bodies
in the Jikes RVM are stored within the GC-managed heap,
the smaller maximum heap in the Min RVM means that less
code can exist at any point during testing. In the Min con-
figuration, the results indicate that across a single trial, the
code size for JD varies from a minimum of 24, 935 KB to a
maximum of 170, 363 KB and demonstrates a standard de-
viation of 31, 142 KB. Yet, when JD is executed with the
Full RVM, the code size varies from 128, 025 KB to the
same maximum of 170, 363 KB with a standard deviation
of 19, 775 KB. We attribute this phenomenon to the fact



Name T %

R
(P, T ) S%

R
(P, T )

S-GC 12.1 78.5 X

X-GC 11.1 61.4
S-TM 12.5 62.9
X-TM 12.3 44.9
S-CS 16.8 X 56.4
X-CS 11.6 52.4

(a)

Name T %

R
(P, T ) S%

R
(P, T )

S-GC 32.7 78.8 X

X-GC 32.1 65.0
S-TM 32.0 72.8
X-TM 31.5 62.3
S-CS 34.3 X 61.4
X-CS 33.4 59.8

(b)

Name T %

R
(P, T ) S%

R
(P, T )

S-GC 8.6 55.0 X

X-GC 8.5 39.2
S-TM 14.7 X 56.3
X-TM 8.6 30.5
S-CS 9.4 45.0
X-CS 6.3 35.2

(c)
Name T %

R
(P, T ) S%

R
(P, T )

S-GC 24.3 79.0 X

X-GC 25.4 63.4
S-TM 25.0 X 64.9
X-TM 24.6 47.8
S-CS 24.7 61.6
X-CS 20.9 46.9

(d)

Name T %

R
(P, T ) S%

R
(P, T )

S-GC 20.3 76.6
X-GC 21.1 60.8
S-TM 20.0 74.0
X-TM 21.5 X 60.9
S-CS 21.0 76.7 X

X-CS 20.8 73.0
(e)

Name T %

R
(P, T ) S%

R
(P, T )

S-GC -1.1 42.5
X-GC -1.1 26.7
S-TM -1.2 44.5
X-TM -.29 X 28.8
S-CS -.77 51.4
X-CS -1.4 61.4 X

(f)

Figure 6. Reductions for (a) UBS, (b) L, (c) SC, (d) S, (e) JD, and (f) ID.

that the Min RVM slowly grows the native code space over
time while the Full RVM’s ample memory resources enable
it to quickly allocate large regions of the heap to support na-
tive code storage. In summary, these baseline experiments
demonstrate the need for a technique that can (i) reduce the
execution time of testing when the RVM operates in a Min
configuration, (ii) decrease or maintain the size of the Jikes
RVM process, (iii) reduce the average code size during test-
ing, and (iv) strategically load and unload native code while
avoiding any undesirable fluctuations in native code size.

Time and Space Reductions. Figure 6 summarizes the
time and space reduction percentages when all of the code
unloading strategies and all of the case study applications
are executed on the Min RVM (these average values are
computed using the arithmetic mean from the five experi-
ment trials). In this figure, S%

R (P, T ) refers to the percent
reduction in the size of the code bodies and a checkmark
(i.e., “X”) indicates the technique that produced the great-
est percent reduction of time or space overhead. These re-
sults show that the code unloading technique that produces
the most noticeable space reduction does not always lead to
the best time reduction. In the UBS, L, and S applications,
S-GC yields the largest S%

R (P, T ) value while S-CS or S-
TM creates the greatest value for T %

R (P, T ). This is due to
the fact that the S-GC often unloads code too aggressively,
thus decreasing space overhead at the cost of requiring ad-
ditional time to reload previously unloaded code [23].

Figure 7 presents the variation of native code size that
occurred during the first trial of test suite execution for each
application. The “zig zags” in the code size variation graphs
of Figure 7 show that S-GC causes the RVM to rapidly in-
crease and decrease the size of the native code bodies.1 For
example, S-GC quickly reduces the code size of UBS from
25, 214 KB to 7, 653 KB only to require an immediate in-
crease in code size to 32, 043 KB and ultimately force eight
invocations of the unloader. In contrast, Figure 7 shows that

1In an attempt to create a clear visualization, Figure 7(e) only depicts the first
three seconds of executing JD’s test cases.

the S-CS method only calls for three uses of the unloader
during the testing of UBS. While this problem could po-
tentially be resolved by increasing H , the heap residency
parameter, it underscores the challenge of automated test-
ing with code unloading. For test suites that exhibit the ir-
regular reuse of “set up” and “tear down” methods or the
unanticipated re-testing of a method, overly ambitious code
unloading can limit the reductions in testing time.

Figure 8(a) further explains this trend by tracking the av-
erage number of code unloads produced by S-CS, S-TM, and
S-GC across all experiment trials. If an inflection point in
a graph from Figure 7 represents a single code unloading
event, then the height of a bar in Figure 8(a) corresponds
to the arithmetic mean of these events over the five runs of
the test suite. For UBS, we found that S-GC (79%) creates
a larger space reduction than S-CS (61%). Yet, S-GC does
not reduce testing time for UBS any more than S-CS (24.3%
- S-GC vs. 24.7% - S-CS) because on average it triggers a
code unload more often than S-CS (11.4 - S-GC vs. 2.0 - S-
CS). In fact, Figure 8(a) reveals that for four of the six case
study applications, S-GC causes over two times the number
of costly unloading events necessitated by S-CS.

The results in Figure 6 also indicate that S-CS, S-TM, and
X-TM normally produce the most significant time reduction.
However, it is important to observe that all of the techniques
create very similar decreases in time overhead. This trend
is demonstrated by fact that the time reductions for L range
from a minimum of 31.5% (X-TM) to a maximum of 34.3%
(S-CS). Figure 9 presents the average time and space per-
cent reductions across all of the chosen case study applica-
tions, suggesting that S-GC most effectively reduces space
overhead while S-CS is the best at decreasing time. These
results indicate that, for the selected applications, it is ben-
eficial (on average) to use unloading to lessen the time and
space overhead of testing. Yet, unloading is unlikely to en-
able more programs and tests suites to concurrently run on
the same device since the last column of Figure 10 reveals
that RVM process size does not decrease after introducing



0 0.5 1 1.5 2 2.5 3 3.5
Time HsecL0

10000

20000

30000

40000

C
o
d
e
S
i
z
e

HKBL
S-CS S-GC

(a)

0 1 2 3 4 5 6 7
Time HsecL0

10000

20000

30000

40000

C
o
d
e
S
i
z
e

HKBL

S-CS S-GC

(b)

0 0.5 1 1.5 2 2.5 3
Time HsecL0

10000

20000

30000

40000

50000

60000

C
o
d
e
S
i
z
e

HKBL

S-CS S-GC

(c)

0 0.5 1 1.5 2 2.5 3 3.5
Time HsecL0

10000

20000

30000

40000

C
o
d
e
S
i
z
e

HKBL

S-CS S-GC

(d)

0 0.5 1 1.5 2 2.5 3
Time HsecL0

10000

20000

30000

40000

50000

C
o
d
e
S
i
z
e

HKBL
S-CS S-GC

(e)

0 0.5 1 1.5 2 2.5 3
Time HsecL0

20000

40000

60000

80000

100000

120000

C
o
d
e
S
i
z
e

HKBL

S-CS S-GC

(f)

Figure 7. Code Size Variation During Testing for (a) UBS, (b) L, (c) SC, (d) S, (e) JD, and (f) ID.

of our technique (the dashed line represents the measure-
ment taken when the RVM did not use code unloading).

Profile Types. The results provided by Figure 10 also
show that the exhaustive program behavior profile does not
normally enable the reduction of time overhead noticeably
more than the sampled profile. Yet, since the exhaustive
profile is embedded within the code bodies [23], it fre-
quently creates an average code size that is greater than
the corresponding code size for the sample-based technique.
While this greater code size does not always translate into
a larger RVM process size, it does limit the potential of un-
loading if the addition of new tests or application features
eventually increases the code size of the test suite and/or
program. Interestingly, for four out of the six case study ap-
plications (UBS, L, SC, and ID) the X-CS technique creates
a smaller Jikes RVM process size than the S-CS strategy.
We attribute this phenomenon to the fact that the exhaustive
profile ensures that the RVM does not inappropriately un-
load native code bodies and subsequently trigger the growth
of the code cache that is stored in the RVM heap [23].

Per-Application Summary. Using Figure 10 as a refer-
ence, we observe that for UBS (row 1, Figure 10), S-CS pro-
duces the smallest execution time, S-GC creates the small-
est code size, and all techniques yields similar Jikes RVM
memory consumption levels. While X-CS creates a Jikes
RVM with the smallest memory footprint for UBS, it does
so with a noticeable level of variability across trials. Since
S-CS exhibits a smaller standard deviation from the average
execution time and a larger code size than S-GC, we judge
that either S-GC or S-CS are appropriate for UBS.

For L (row 2, Figure 10), S-CS, S-GC, and S-TM all pro-
duce significant reductions of execution time and code size
while maintaining the size of the virtual machine and cre-
ating similarly low levels of variability in the RVM process
size. While S-TM yields the best decrease in testing time for
SC, row 3 of Figure 10 reveals that all methods lead to the
same modest reduction. The results for S (row 4, Figure 10)
show that all techniques have similar time reductions, while
both S-CS and X-CS evidence the most variability in the size
of the code bodies and the RVM process. We anticipate that
this outcome is due to the fact that it is possible to select
better values for the Zinit and Zincr parameters. In fact,
this trend is an external confirmation of the concerns that
Zhang and Krintz raise about configuring the CS strategy
[23]. For JD (row 5, Figure 10), we see that all unloading
methods reduce the execution time from 21.1 seconds to ap-
proximately 16.8 seconds while maintaining the size of the
RVM and avoiding any noticeable variability across trials.

Limitations. Code unloading does not always signifi-
cantly reduce the time overhead associated with the execu-
tion of a test suite in a memory constrained environment.
For example, even though S-GC reduces SC’s native code
size by 55% on average, the time overhead is only reduced
by 8.6%. More importantly, Figure 6 shows that the time
associated with testing ID is always increased by a small
factor (e.g., S%

R (P, T ) ranges from −.29 to −1.4). While
Figure 8(a) shows that no unloading technique causes more
than 4 unloads for ID, Figure 8(b) indicates that S-CS and S-
TM both require the unloading of more than 635 native code
bodies. When compared with the number of unloaded code



2.0

16.0

12.0

4.0

11.0

11.4

4.0

16.6

6.0

4.0

9.0

8.0

4.0

14.0

2.0

1.4

2.0

2.0

0 5 10 15 20

ID

JD

S

SC

L

UBS

ID

JD

S

SC

L

UBS

ð Code Unloading Times

A
p
p
l
i
c
a
t
i
o
n

S-CS S-TM S-GC

(a)

164.0

1970.2

589.8

163.0

542.8

469.4

635.8

2228.2

437.4

303.4

533.0

398.4

664.4

1953.8

326.6

194.0

272.4

238.6

0 500 1000 1500 2000 2500

ID

JD

S

SC

L

UBS

ID

JD

S

SC

L

UBS

ð Unloaded Native Code Bodies

A
p
p
l
i
c
a
t
i
o
n

S-CS S-TM S-GC

(b)

Figure 8. Average Number of (a) Code Unloading Events and (b) Unloaded Code Bodies.

bodies for the L application that has a similar number of
non-commented source statements (see Figure 4), it seems
likely that the RVM must be unloading the native code of
an external library used by ID. In fact, ID uses the Apache
log4j logging utility throughout testing and thus the logger’s
code bodies can only be briefly unloaded before they must
be subsequently reloaded. Since the working set of ID is
very large, the code unloading technique does not improve
the efficiency of testing.2 However, since all of the unload-
ing techniques still reduced the space overhead of ID, it may
be possible for code unloading to both benefit from and en-
able the use of heap compression [9, 22].

An additional limitation of this approach is that it may
restrict the deployment of the program under test. For in-
stance, executing a program’s tests with a Jikes RVM may
not directly establish a confidence in the correctness of the
same program when it runs on a standard JVM. However,
since Zhang and Krintz have shown that their Jikes RVM
can efficiently run a wide variety of traditional programs
[23], it may be reasonable for the testing RVM to also sup-
port the everyday use of the program. Furthermore, the code
unloading RVM may impact the performance and/or behav-
ior of the program, thereby invalidating certain tests and
improperly inflating correctness estimates. Since the ex-
periments suggest that many unloading configurations lead
to similar time and space overheads, testers can handle this
shortcoming by using a different unloader each time testing
occurs. Varying the unloading method may enable the iden-
tification of subtle defects (e.g., problems related to timing
and threads) that would not be detected otherwise. Testers
may also decide to use a regular JVM when extra testing
time is available and/or the project nears a major release.

Threats to Validity. This paper’s experiments are sub-
ject to internal threats to validity that have the potential to

2The small number of average code unloading times and unloaded code bodies
caused by S-GC for the ID application can be attributed to the fact that non-initial
unload frequency (i.e., U ) was set to three GC cycles and the garbage collector was
only invoked twice during testing (see Figure 3 for more details).

affect the measured variables. Since defects in our research
prototype could bias our results, we regularly checked to en-
sure that the use of adaptive code unloading did not improp-
erly impact the behavior and output of the test suites. By
picking several moderate sized programs and test suites and
using a real world test automation framework, we attempted
to control the external validity threats that may limit our
ability to generalize the results. As outlined in Section 6,
we also intend to conduct additional empirical studies in an
attempt to further mitigate concerns about external validity.

5 Related Work
Research related to the testing technique described in

this paper includes (i) approaches to testing and simulation
of embedded systems and sensor networks, (ii) techniques
for executing Java programs in memory constrained envi-
ronments, and (iii) methods for monitoring and understand-
ing the behavior of Java programs. This paper is primarily
distinguished from prior work because of either its focus
on test automation or its detailed empirical study. In cat-
egory (i), Broekman and Notenboom describe a complete
testing methodology for embedded software that includes
recommendations for managing risk, software inspections,
and applying traditional testing approaches to the embed-
ded domain [8]. However, these authors do not specifically
address the issues that are associated with the execution
of test suites in a memory constrained environment. Test-
ing approaches that are tailored for sensor networks include
TOSSIM [15] and Avrora [21]. TOSSIM is a simulator for
TinyOS wireless sensor networks that has been used to find
real defects within the core TinyOS services [15]. Avrora
is also a simulator that improves upon TOSSIM by support-
ing finer-grained timing of the simulated code [21]. Yet,
Levis et al. and Titzer et al. both focus on simulation of re-
source constrained sensor networks and thus differ from our
approach that supports the testing of software in the actual
memory constrained execution environment [15, 21].



Name T %

R
(P, T ) S%

R
(P, T )

S-GC 16.1 68.4 X

X-GC 16.4 52.8
S-TM 17.1 62.6
X-TM 16.4 45.9
S-CS 17.6 X 58.8
X-CS 15.3 54.8

Figure 9. Average Reductions.

In category (ii), Bacon et al. [6] and Sachindran et al.
[18] both customize garbage collection algorithms to op-
erate in memory constrained environments. Yang et al.
also describe an automatic heap resizing technique that uses
knowledge about the actual memory footprint of the virtual
machine [22]. It is possible that these garbage collection
and heap resizing algorithms can be used in conjunction
with the code unloading technique that is part of our cur-
rent approach to testing. Furthermore, the program parti-
tioning scheme developed by Zhang et al. [24] could also
be employed to ensure that tests are executed within accept-
able bounds for time and space overhead. In category (iii),
Hauswirth et al. [12] present different techniques that can
be used to profile and understand the behavior of Java soft-
ware applications and thus ensure that the question what to
unload? is answered as accurately as possible.

6 Conclusions and Future Work
It is very important to test a software application in the

environment in which it will execute, even if this environ-
ment is an embedded one that constrains memory resources.
This paper empirically evaluates a testing technique that
uses an adaptive code unloading Java virtual machine to en-
sure that testing is feasible when JVM heap resources are
limited. The experiments described in this paper use the
Jikes RVM to execute the JUnit test suites of small and
moderate scale Java programs. In particular, we measure
the time overhead, the average size of native code bodies,
and the overall size of the virtual machine process. Our re-
sults reveal that it is possible to reduce both the time over-
head of testing by 17.6% and the space overhead of the na-
tive code bodies by 68.4% while maintaining the size of the
Jikes RVM process. Finally, we identify several interest-
ing trade-offs associated with automated testing in memory
constrained environments. For instance, the empirical study
suggests that code unloading may not be beneficial for pro-
grams and test suites with large working sets of active meth-
ods. Yet, we judge that when used in conjunction with heap
compression and other optimization methods (see below for
more details), our approach may be ideal for cutting edge
handsets like the T-Mobile G1 with Google Android.

Future research will investigate the impact that garbage
collection [6, 18] and heap compression [9, 22] algorithms
for memory constrained environments could have upon the
performance of testing. We will also develop new ap-
proaches to test suite prioritization that re-order the execu-

tion of a test suite in an attempt to minimize time and/or
space overhead while maximizing metrics such as structural
test coverage [17]. Our preliminary work in this area sug-
gests that offline techniques can efficiently identify test suite
orderings that effectively minimize the loading and unload-
ing of method code bodies [7]. We will also use the existing
Jikes RVM framework to conduct further empirical evalu-
ations with new case study applications. Finally, we will
consider operating systems for resource constrained mobile
devices (e.g., [11, 16]) in order to implement and evaluate
our technique in a real embedded environment.

References
[1] http://muvium.com/.
[2] http://www.embedded-web.com/.
[3] http://tynamo.qindesign.com/.
[4] https://micromatica.dev.java.net/.
[5] http://T-MobileG1.com/.
[6] D. F. Bacon et al. Garbage collection for embedded systems.

In Proc. of 4th EMSOFT, 2004.
[7] S. Bhadra and G. M. Kapfhammer. Prioritizing test suites by

finding Hamiltonian paths: Preliminary studies and initial
results. In Proc. of 3rd TAIC PART (Abstract), 2008.

[8] B. Broekman and E. Notenboom. Testing Embedded Soft-
ware. Addison-Wesley, November 2002.

[9] G. Chen et al. Heap compression for memory-constrained
Java environments. In Proc. of 18th OOPSLA, 2003.

[10] M. Chen and K. Olukotun. Targeting dynamic compilation
for embedded environments. In Proc. of 2nd JVMRTS, 2002.

[11] R. Guy. Avoiding Memory Leaks. AD Blog, 2009.
[12] M. Hauswirth et al. Vertical profiling: understanding the

behavior of object-oriented applications. In Proc. of 19th
OOPSLA, 2004.

[13] G. M. Kapfhammer et al. Testing in resource constrained
execution environments. In Proc. of ASE, 2005.

[14] R. Lehrbaum. Focus on embedded systems: Embedded
Linux and Java—wave of the future? Linux Journal,
2002(94):13, 2002.

[15] P. Levis et al. TOSSIM: accurate and scalable simulation of
entire TinyOS applications. In Proc. of 1st SENSYS, 2003.

[16] H. Liu et al. Design and implementation of a single system
image operating system for ad hoc networks. In Proc. of 3rd
MOBISYS, 2005.

[17] M. Rummel et al. Towards the prioritization of regression
test suites with data flow information. In Proc. of 20th SAC,
2005.

[18] N. Sachindran et al. MC2: high-performance garbage col-
lection for memory-constrained environments. In Proc. of
19th OOPSLA, 2004.

[19] N. Shaylor. A just-in-time compiler for memory-constrained
low-power devices. In Proc. of 2nd JVMRTS, 2002.

[20] H. Shim et al. Low-energy off-chip SDRAM memory sys-
tems for embedded applications. TECS, 2(1):98–130, 2003.

[21] B. L. Titzer et al. Avrora: Scalable sensor network simula-
tion with precise timing. In Proc. of 4th IPSN, 2005.

[22] T. Yang et al. Automatic heap sizing: taking real memory
into account. In Proc. of 4th ISMM, 2004.

[23] L. Zhang and C. Krintz. The design, implementation,
and evaluation of adaptive code unloading for resource-
constrained devices. ACM TACO, 2(2), 2005.

[24] T. Zhang et al. Tamper-resistant whole program partitioning.
In Proc. of LCTES, 2003.



S-GC X-GC S-CS X-CS S-TM X-TM
UniqueBoundedStack

1

2

3

4

5
E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL
S-GC X-GC S-CS X-CS S-TM X-TM

3.758 3.8
3.556

3.782 3.74 3.752

S-GC X-GC S-CS X-CS S-TM X-TM
UniqueBoundedStack

10000

20000

30000

40000

50000

60000

C
o
d
e
S
i
z
e

HKBL

S-GC X-GC S-CS X-CS S-TM X-TM

12959.3

23337.4
26346.8

28785.3

22401.6

33327.5

S-GC X-GC S-CS X-CS S-TM X-TM
UniqueBoundedStack

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

S-GC X-GC S-CS X-CS S-TM X-TM

43.0167 43.3 44.45
41.09

43.25 44.5767

S-GC X-GC S-CS X-CS S-TM X-TM
Library

2

4

6

8

10

12

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL

S-GC X-GC S-CS X-CS S-TM X-TM

7.168 7.222 6.998 7.09 7.238 7.292

S-GC X-GC S-CS X-CS S-TM X-TM
Library

20000

40000

60000

80000

C
o
d
e
S
i
z
e

HKBL

S-GC X-GC S-CS X-CS S-TM X-TM

16052.7

26463.7
29212.130444.1

20612.2

28545.1

S-GC X-GC S-CS X-CS S-TM X-TM
Library

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

S-GC X-GC S-CS X-CS S-TM X-TM

44.0036 43.8036 44.6524 42.9429 43.8 44.0571

S-GC X-GC S-CS X-CS S-TM X-TM
ShoppingCart

1

2

3

4

5

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL

S-GC X-GC S-CS X-CS S-TM X-TM

3.368 3.372 3.338 3.452
3.142

3.37

S-GC X-GC S-CS X-CS S-TM X-TM
ShoppingCart

10000

20000

30000

40000

50000

60000

C
o
d
e
S
i
z
e

HKBL

S-GC X-GC S-CS X-CS S-TM X-TM

23738.5

32076.8
28976.

34194.8

23068.9

36654.7

S-GC X-GC S-CS X-CS S-TM X-TM
ShoppingCart

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

S-GC X-GC S-CS X-CS S-TM X-TM

44.2 44. 44.4667
40.85

43.65 44.

S-GC X-GC S-CS X-CS S-TM X-TM
Stack

1

2

3

4

5

6

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL

S-GC X-GC S-CS X-CS S-TM X-TM

3.932 3.872 3.914 4.11 3.896 3.918

S-GC X-GC S-CS X-CS S-TM X-TM
Stack

10000

20000

30000

40000

50000

60000

70000

C
o
d
e
S
i
z
e

HKBL

S-GC X-GC S-CS X-CS S-TM X-TM

13646.5

23797.1 24999.4

34524.5

22794.2

33977.3

S-GC X-GC S-CS X-CS S-TM X-TM
Stack

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL
S-GC X-GC S-CS X-CS S-TM X-TM

43.3667 44.3167 41.75 42.3667
44.2667 44.4167

S-GC X-GC S-CS X-CS S-TM X-TM
JDepend

5

10

15

20

25

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL

S-GC X-GC S-CS X-CS S-TM X-TM

16.816 16.644 16.658 16.712 16.892 16.568

S-GC X-GC S-CS X-CS S-TM X-TM
JDepend

25000

50000

75000

100000

125000

150000

C
o
d
e
S
i
z
e

HKBL

S-GC X-GC S-CS X-CS S-TM X-TM

34758.2

58187.6

34658.9
40100.1 38522.3

58072.5

S-GC X-GC S-CS X-CS S-TM X-TM
JDepend

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

S-GC X-GC S-CS X-CS S-TM X-TM

46.5897 46.3765 46.4676 46.2654 46.2816 46.8625

S-GC X-GC S-CS X-CS S-TM X-TM
IDTable

1

2

3

4

5

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL

S-GC X-GC S-CS X-CS S-TM X-TM

3.416 3.38 3.402 3.426 3.418 3.386

S-GC X-GC S-CS X-CS S-TM X-TM
IDTable

20000

40000

60000

80000

100000

C
o
d
e
S
i
z
e

HKBL

S-GC X-GC S-CS X-CS S-TM X-TM

60078.5

76589.9

50780.8

40320.1

57937.

74394.8

S-GC X-GC S-CS X-CS S-TM X-TM
IDTable

10

20

30

40

50

60

R
V
M
P
r
o
c
e
s
s
S
i
z
e

HMBL

S-GC X-GC S-CS X-CS S-TM X-TM

46.0333 46.75 46.95
44.5667 45.2667

47.2

Figure 10. Changes in Test Suite Execution Time, Native Code Size, and RVM Process Size.


