
Prioritizing Test Suites by Finding Hamiltonian Paths:
Preliminary Studies and Initial Results

Suvarshi Bhadra and Gregory M Kapfhammer
Allegheny College

Department of Computer Science
suvarshi.bhadra@gmail.com, gkapfham@allegheny.edu

Introduction . This paper describes a technique for pri-
oritizing a test suite by finding the least weight Hamilto-
nian path in a complete graph that represents relative test-
ing costs. Our technique is especially useful when testing
confronts constraints such as quotas in a Web service [3],
memory overhead [4], or test execution time [5]. During the
testing of modern mobile computing devices (e.g., handsets
running Google Android), it is often challenging to prop-
erly handle memory constraints. Thus, even though we an-
ticipate that our approach is valuable in a wide variety of
limited resource environments, this paper focuses on pri-
oritizing test suites for memory constrained execution. In
summary, the important contributions of this paper include:

1. The formulation of a graph-theoretic approach to test
prioritization that leverages traveling salesperson prob-
lem (TSP) solvers to find Hamiltonian paths.

2. A detailed empirical evaluation that uses synthetic test
suites to determine the efficiency and effectiveness of
the TSP solvers that re-order the test cases.

Motivating Example. In the context of resource con-
strained mobile devices, frequent reads and writes to mem-
ory may increase testing time by as much as600% when
a Java application executes on a virtual machine with a
small heap [4]. To this end, we prioritize a test suite in
order to minimize the loading and unloading of bytes as-
sociated with both the native code of methods and objects
allocated to the heap (tools such as Jikes RVM, HProf,
and DJProf enable the collection of this information). Fur-
thermore, our technique ensures that the ordering of a test
suite will never consume more than a specified amount
of memory. For instance, Figure 1 describes a test suite
T = 〈T1, T2, T3, T4, T5〉 that tests a program consisting of
six equi-sized methods. In this example, each method con-
sumes 30 units of memory and a dot in the matrix indicates
that a test case calls a method during execution.

Assuming that the size of a test case is the sum of the
sizes of the methods it calls and that the memory constraint
is the size of the largest test case (i.e.,T1, T2, or T4), then
it is clear that different orderings require a dissimilar num-
ber of loads and unloads. If the test executor always loads
and unloads all of a method’s code and data, then the initial
orderingT = 〈T1, T2, T3, T4, T5〉 necessitates the transfer
of 750 units to and from memory. This prioritization in-
curs a high cost because runningT2 afterT1 causes meth-
odsm1,m2, andm3 to be loaded and then immediately un-
loaded in order to make room form4,m5, andm6. In con-

m1 m2 m3 m4 m5 m6 Test
30 30 30 30 30 30 Size

T1 • • • 90
T2 • • • 90
T3 • • • 90
T4 • • • 90
T5 • • 60

Figure 1: Representation of a Test Suite.

trast, the orderingT ′ = 〈T2, T4, T1, T3, T5〉 only calls for
the loading and unloading of 180 units becauseT ′ maxi-
mizes method reuse between neighboring test cases. The
remainder of this paper describes techniques that use test
cost information to create an improvedT ′ from test suiteT .

Technique. Given a test suite T =
〈T1, . . . , Ti, Tj , . . . , Tn〉, we formulate a correspond-
ing asymmetric and complete graphKn = 〈V,E〉 such that
|V | = n and|E| = n × (n − 1)/2. For all of the adjacent
test casesTi, Tj ∈ T , we constructKn so thatvi, vj ∈ V
andeij , eji ∈ E wheneij is an edge fromvi to vj with
costcij . A Hamiltonian pathP throughKn is a path that
visits each vertexvi ∈ V exactly once and the cost of a
Hamiltonian path, denotedCP , is the sum of the costs for
all of the edges inP . ViewingP as a tuple of edges enables
us to construct a prioritized test suiteT ′ such that for each
ekl ∈ P we have〈Tk, Tl〉 ∈ T ′. If cij is the cost, in bytes
loaded and unloaded, associated with executing testTj

after Ti, then finding a low cost Hamiltonian pathP will
yield a test prioritizationT ′ that reduces memory transfers
and subsequently decreases test execution time.

In order to ensure thatT ′ does reduce overall testing
time, it is important to devise a cost valuecij that prop-
erly expresses the costs for runningTj after Ti. In this
paper, we exclusively focus on the overlap in the method
calls for two adjacent test cases. Ifcall(Ti) andcall(Tj)
respectively denote the sets of methods invoked byTi and
Tj during testing, then we calculate the edge cost withcij =
2×size(call(Tj)\call(Ti)). In this equation,size is a func-
tion that returns the bytes consumed by all of the methods
in its input set. For instance, applying the calling informa-
tion in Figure 1 to the test ordering inT yields a cost value
c12 = 2×size({m4,m5,m6}\{m1,m2,m3}) = 180 (the
other costs would be calculated in an analogous fashion).

Our formulation ofcij anticipates that the test execu-
tor will unload enough methods to accommodate the new
methods that are required byTj . If we also accept the
simplifying assumption that the size of methods to be un-
loaded is approximately equal to the size of those that
must be loaded, thencij may be calculated by doubling

0 200 400 600 800 1000

88
90

92
94

96
98

10
0

NN

RNN

NI

FI

CI

AI

Percentile Rank v No of Test Cases

(n)

(r)

(a)

10 20 30 40 50

50
60

70
80

90
10

0

Score v No of Test Cases − NN

(n)

(s
co

re
)

(b)

10 20 30 40 50

50
60

70
80

90
10

0

Score v No of Test Cases − FI

(n)

(S
co

re
)

(c)

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

NN

RNN

NI

FI

CI

AI

Time v No of Test Cases

(n)

(t)

(d)
Figure 2: Experimental Results from Using TSP Solvers to Prioritize Synthetic Test Suites.

size(call(Tj) \ call(Ti)). Finally, if we suppose that the
resource constrained device always contains enough mem-
ory to fully execute any single test, then our cost equation
ensures that the memory limit will not be exceeded. Yet,
our cost formulation is simplistic because it focuses on the
overlap in method calls for testsTi andTj , thus ignoring all
of the test cases that ran beforeTi and will execute afterTj .

WhenT actually runs, there is the possibility that all of
the methods in the setcall(Tj) \ call(Ti) do not have to
be loaded because they already exist in memory from a test
case that ran prior toTi. Furthermore, since methods are
not always equi-sized, we are not guaranteed that the size
of the unloaded methods will exactly equal those that are
loaded. Finally, it is possible that the device’s memory con-
straint may not be reached until the test executor runs a cer-
tain number of tests. Up to the point in time when the test
cases consume all of the available memory, the real cost as-
sociated with running the tests only corresponds to loading
native code bodies and allocating objects to the heap. In
summary, the estimated cost of runningTj afterTi may be
higher than the actual cost evident during test execution.

We use TSP solvers implemented in the R programming
language [2] to identify a low costP within Kn and thus
createT ′. After representingKn as ann × n matrix, we
use the nearest neighbor (NN), repetitive nearest neighbor
(RNN), nearest insertion (NI), farthest insertion (FI), cheap-
est insertion (CI), and arbitrary insertion (AI) TSP solvers
to form P [2]. Since these solvers use heuristics to create
P , it is possible that the resulting path may not be the opti-
mal one forKn. Due to the fact that our calculation ofcij is
only a rough estimate for the actual cost of running〈Ti, Tj〉,
it is also possible that the length ofP may not directly cor-
respond to the real cost of executingT ′.

Experiment Design. Since synthetic test suites enable
the study of the trade-offs in the efficiency and effectiveness
of testing techniques [1], we randomly generated test suites
that contain up ton = 1000 tests. For each value ofn, the
generation procedure constructs32 distinct tables like the
one in Figure 1. Yet, the generator assigns random method
sizes and it constructscall(Ti) sets that vary in both their
size and contents. We used each of the randomly generated
test suites as an input to the six TSP solvers and recorded
the value ofCP and the resulting prioritizationT ′. We also

implemented a test suite executor that can runT ′ in order to
calculate the exact number of loads and unloads and thereby
determine the actual cost of a prioritization. Since there are
n! orderings ofT , we compare eachT ′ to the orderings in a
sampling setS such that|S| ≤ n!. If B is the set of prior-
itizations inS thatT ′ is better than in terms of actual cost,
thenscore(T ′) = |B|/|S| × 100 ∈ [0, 100] is the quality
of T ′ with higher values representing better test prioritiza-
tions. Since the value ofn! may be prohibitively large, we
populateS with n2 randomly generated orderings.

Experimental Results. In the context of the random or-
derings inS, Figure 2(a) gives the percentile rank ofCP for
the pathP created by each TSP solver. Since small values
for CP are desirable, a percentile rank corresponds to the
percentage of theS prioritizations for which the solver’s
value ofCP is lower. While the results in Figure 2(a) in-
dicate that there is some variability in the value ofCP for
different solvers, it is evident that the techniques find low
cost Hamiltonian paths in the 80th percentile rank or better.
Figures 2(b) and 2(c) furnish box plots where an individual
box and whisker represents the variability ofscore across
the 32 distinct test tables. These graphs demonstrate that
the value ofscore improves as the size of the test suite in-
creases (we omit graphs for additional techniques because
they show the same empirical trend). Figures 2(b) and 2(c)
do not contain results beyondn = 50 because of the high
computational cost associated with runningT ′ in the test
executor and storing the full history of memory transfers.
Finally, Figure 2(d) suggests that asn ranges from 10 to
1000, prioritization time varies from less than .05 seconds
to more than 200 seconds. We also observe that the most
effective techniques (e.g., RNN, CI, FI, NI) require more
time than the other solvers. Given these promising prelimi-
nary results, we intend to refine our prioritizers and evaluate
them with both synthetic and real world test suites.

References
[1] F. Haftmann, D. Kossmann, and E. Lo. A framework for efficient regression tests

on database applications.The VLDB Journal, 16(1), 2007.
[2] M. Hahsler and K. Hornik. TSP - infrastructure for the traveling salesperson

problem.Journal of Statistical Software, 23(2), 2007.
[3] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun. Quota-constrained test-case prioriti-

zation for regression testing of service-centric systems. InProc. of ICSM, 2008.
[4] G. M. Kapfhammer, M. L. Soffa, and D. Mosse. Testing in resource constrained

execution environments. InProc. of ASE, 2005.
[5] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time-aware

test suite prioritization. InProc. of ISSTA, 2006.

