
1

Implementation and Analysis of a JavaSpace
Supported by a Relational Database

Geoffrey C. Arnold, Gregory M. Kapfhammer, and Robert Roos

Abstract—The combination of the Jini network technology and the
JavaSpaces object repository provides an exceptional environment for the
design and implementation of loosely coupled distributed systems. We ex-
plore the strengths and weaknesses of the most popular implementation of
a persistent JavaSpace. We report on the design, implementation, and anal-
ysis of RDBSpace, a JavaSpace that is supported by a relational database.
Our experimental results indicate that it is possible to build an efficient and
scalable JavaSpace that relies on a relational database back-end.

Index Terms—Distributed System, Tuple-space, JavaSpace, Relational
Database

I. INTRODUCTION

ISTRIBUTED computation normally relies upon a collec-
tion of cooperating processes that are distributed across a

network of machines [1]. For certain sets of complex problems,
distributed computations offer numerous advantages over their
sequential counterparts, including performance improvements,
enhanced scalability, resource sharing, fault tolerance, and sys-
tem design elegance [1]. Unfortunately, the implementation of
distributed applications often introduces a variety of problems.
Designers of distributed systems must concern themselves with
the heterogeneity of the software and hardware platforms on
which the application is to be executed, while also addressing
the problems that are imposed by network environments such as
latency, concurrency, and partial failure [1], [2].

A. The Tuple-Space Concept

In the early 1980s, Gelernter et al. broke away from the tra-
ditional models of distributed computation and introduced the
concept of a tuple-space [3],[4],[5]. Figure 1 depicts a tuple-
space that facilitates process interaction through the exploita-
tion of the concept of a shared memory [6]. By combining a
persistent data store with a small set of operations, Gelernter pi-
oneered the concept of loosely coupled process communication
that could be independent of both space and time [1], [3], [4].
Initial implementations of the tuple-space concept in the Linda
coordination language produced benchmarks similar to tradi-
tional message passing models, while maintaining the ability to
create complex parallel and distributed applications [1].

B. Tuple-Space Concerns

The tuple-space has since become the inspiration of numer-
ous commercial implementations of the concept, including the
JavaSpaces service from Sun Microsystems. By combining the
power of the Java programming language with the flexibility of
the Jini network technology, JavaSpaces has become one of the

Department of Computer Science
Allegheny College, Meadville PA, 16335, USA
Email: geoffrey@geoffreyarnold.com
Email:

�
gkapfham,rroos � @allegheny.edu

TupleTuple

Process 3Process 1

Process 2

Tuple-Space

Fig. 1. Tuple-space based process communication.

most commercially viable tuple-space implementations avail-
able today. Unfortunately, there are shortcomings in Sun’s im-
plementation of a persistent tuple-space. The implementation
uses an object-oriented database back-end for persistent tuple
storage. Our initial experiments indicate that the current JavaS-
paces back-end has introduced scalability and performance is-
sues into the implementation [7]. The chosen back-end database
also has a limited availability of advanced database features
such as data replication. Finally, all of the upgrade paths for
the back-end database used in the current JavaSpaces imple-
mentation require the purchase of commercial object-oriented
databases.

C. Related Work

We have created an implementation of a persistent JavaS-
paces service that utilizes an open-source relational database
back-end to persistently store tuples. Through the usage of
native database functionality, our implementation supports ad-
vanced fault protection features such as data replication. After
evaluating different architectures for a JavaSpaces service, we
implemented RDBSpace, a JavaSpace that is supported by a re-
lational database. Our JavaSpace employs both a novel archi-
tecture to ensure the best possible performance gains.

To the best of our knowledge, our implementation and anal-
ysis of a free, open-source JavaSpaces service supported by a
relational database back-end is the first of its nature. However,
Larsen et al. have focused on improving the fault-tolerance
and scalability of the existing JavaSpaces implementation by di-
rectly adding mechanisms for replication management [8]. Fur-
thermore, Noble et al. have conducted several empirical analy-
ses to evaluate the applicability of JavaSpaces for different types
of scientific computation [6]. Finally, there are alternative com-
mercial implementations of a JavaSpace, such as GigaSpaces
[9].

In Section II, we review the Jini network technology and the
JavaSpaces object repository. Next, Section III describes our
alternative implementation of a JavaSpace. In this section we
discuss a service design spectrum for JavaSpaces and explore

2

the architecture of our implementation of a JavaSpace. Also, we
explain our approach for using a relational database to support
a persistent JavaSpace. Finally, Section IV offers an empirical
analysis of our JavaSpace and we conclude with some future
avenues for research in Section V.

II. JINI AND JAVASPACES

A. Jini Network Technology

As explained by Oaks et al., “Jini allows cooperating devices,
services, and applications to access each other seamlessly, to
adapt to a continually changing environment, and to share code
and configurations transparently” [10]. Jini is not a network ser-
vice itself, but rather a set of specifications that enables service
interaction [10]. The Jini specification describes a collection of
protocols that allow clients and services to dynamically interact
in an attempt to effectively solve problems in a distributed fash-
ion. Jini not only allows for the creation of remote services, but
also provides a self-healing framework for the maintenance of
services [10]. A more detailed discussion of the Jini network
technology can be found in [10] and [11].

B. JavaSpaces

The JavaSpaces service is a shared object warehouse that can
be utilized by a group of Jini clients and services. Unlike other
tuple repositories, JavaSpaces requires that the objects residing
within a space act as passive data. Thus, an object that is stored
in a JavaSpace can only be modified if it is explicitly removed,
updated, and returned to the space [1]. The JavaSpaces ser-
vice can persistently stores tuples that can later be accessed by
clients that submit queries for specific types of Java object. For
a detailed review of the JavaSpaces service, refer to [1].

B.1 JavaSpaces Operations

Figure 2 depicts the three primary operations that facilitate
JavaSpaces interaction. Objects are written to, and read or taken
from a space. Since these operations support the creation of
solutions for a large domain of problems, JavaSpaces are said
to be simple and expressive [1]. Additional functionalities of
JavaSpaces include a tuple notification mechanism and a snap-
shotting technique designed to reduce the performance impact
of repeated queries.

Local Objects

Objects

Space

take

read

write

Fig. 2. An overview of JavaSpaces operations: read, write, and take.

B.2 Associative Lookup

Associative lookup is the mechanism by which objects are
retrieved from a JavaSpace. Before a client can retrieve an en-
try from a space, it must first create a template to describe the
desired object(s). When creating a template, the client explic-
itly specifies values for object fields [1]. The JavaSpaces object
repository also facilitates wildcard matching by exploiting the
usage of null field values in templates [1].

Associative lookup is performed by comparing each field of
the serialized form of entries within a space and the provided
template [1]. Instead of examining the contents of an object’s
fields, the JavaSpaces service compares the bytes of the serial-
ized form of each field [1]. It is important to note that any field
annotations added by Java object serialization are ignored when
matching objects [1].

III. AN ALTERNATIVE JAVASPACES IMPLEMENTATION

We have implemented RDBSpace so that it utilizes a rela-
tional database back-end for the storage of tuples. Our design
goals are briefly explained below:

Speed To be a viable implementation, the service should
meet or exceed performance benchmarks set by the default
persistent JavaSpaces implementation.

Scalability As hardware performance continues to improve,
so should the performance of the service.

Portability It should be easy to enable our implementation to
exploit the capabilities of different operating systems and
relational database servers.

Advanced Functionality It should be possible to utilize fea-
tures like data replication and extended backup capabilities
in the chosen implementation.

A. JavaSpaces Service Architectures

By combining the design requirements for our JavaSpace
with the capabilities of the Jini network technology, we can
form a service design spectrum for JavaSpaces. At one end of
the spectrum is a client-centric service model in which the ser-
vice is downloaded and run completely within the the client’s
own Java Virtual Machine (JVM) [12]. At the other end of
the spectrum is a server-centric model in which most of the
processing takes place within the remote service’s JVM [12].
The hybrid model incorporates facets of both the client-centric
and the server-centric models. This JavaSpaces architecture still
performs much of its processing within the client’s JVM, while
using an external data-source to store objects. Although each
of the models require very different implementations, all ar-
chitectures imply that clients must be able to access the well-
known interface to the JavaSpace service. Our implementation
of RDBSpace uses the server-centric model during a client’s
usage of the read and take operations. Also, RDBSpace em-
ploys the hybrid model when a client performs a write opera-
tion.

A.1 The Client-Centric JavaSpaces Service

In a client-centric JavaSpace service architecture, all of the
processing occurs within the client’s JVM. Jini provides the

Arnold, Kapfhammer, Roos: IMPLEMENTATION AND ANALYSIS OF A JAVASPACE SUPPORTED BY A RELATIONAL DATABASE 3

mechanism for the lookup and discovery of the service, point-
ing clients to the necessary code-base needed to download the
JavaSpaces service. As noted by Newmarch, client-centric ser-
vices are well-suited to applications that are independent of time
and location, such as is the case of a JavaSpaces service [12].
Furthermore, the client-centric architecture essentially elimi-
nates the JavaSpace as single point of failure in a distributed
system. However, the distributed synchronization of the numer-
ous JavaSpace clients makes it difficult for the client-centric
JavaSpaces service to facilitate concurrent access by multiple
clients [13]. A diagram of the client-centric service architecture
is presented in Figure 3.

Client JVM Service JVM

ServiceClient

Fig. 3. Diagram of a client-centric service.

A.2 The Server-Centric JavaSpaces Service

In a server-centric JavaSpaces service architecture, a proxy
to the service is downloaded to the client upon request in much
the same fashion as the client-centric architecture. However, the
proxy is not a full implementation of the JavaSpaces service. In-
stead, it is simply a link to a remote service that provides access
to the desired methods via the use of remote method invocation
(RMI) stubs and skeletons. Providing that the server-centric
JavaSpaces service is implemented in a fashion that correctly
handles synchronization issues, it can easily be shared among
multiple clients. A potential shortcoming of the server-centric
design is the introduction of a single point of failure in the dis-
tributed system. Also, a server-centric service can suffer perfor-
mance bottlenecks as the number of clients concurrently access-
ing the service increases. The experimental analyses conducted
by Zorman indicate that this performance bottleneck can limit
the architecture’s scalability [14]. Figure 4 outlines the details
of a server-centric service.

Codebase

SkeletonStub

Client JVM Service JVM

ServiceClient

Fig. 4. Diagram of a server-centric service.

A.3 The Hybrid JavaSpaces Service

The hybrid JavaSpaces service architecture represents an at-
tempt to capitalize on the strengths of the client-centric and
server-centric architectures. Although a hybrid service per-
forms much of its processing within the client’s JVM, it also
utilizes an external data-source for the storage of objects. Com-
munication between the client and the external service is com-
monly accomplished through the usage of a proprietary pro-
tocol. For example, Java natively supports database access

through drivers that implement the Java Database Connectivity
(JDBC) application programmer interface (API). Hence, these
drivers could be used to facilitate the communication between
a hybrid service and an external data-source. By transferring
responsibility to existing technologies, the hybrid service can
dramatically decrease the complexity of a service, while utiliz-
ing proven technologies to provide performance enhancements
and additional features. A diagram of this hybrid service design
is presented in Figure 5.

Service

Service JVM

Source
Data

External

Client

Client JVM

Fig. 5. Diagram of a hybrid service.

A.4 Architecture Analysis

Initial experiments with the different architectures of a JavaS-
pace confirmed our suspicions about the strengths and weak-
nesses of the three architectures for a JavaSpace [7]. Since
the client-centric architecture was plagued with implementation
concerns related to synchronization, we compared the service-
centric and the hybrid models. In our initial analyses, the server-
centric JavaSpaces architecture exhibited far less of a slowdown
during take operations, while the hybrid service was crip-
pled by network latencies [7]. The experiments with the hybrid
service clearly indicate the costs that are accrued when a dis-
tributed system ignores the heuristic of “keep the computation
close to the data” [13]. To this end, we chose to implement
RDBSpace in a manner that combined the strengths of both the
server-centric and hybrid architectures.

B. Object Storage in a Relational Database

The term object serialization describes the ability to encode
objects as raw byte streams in such a way as to preserve the
state of the object for later usage [15]. During the serialization
process, all data that comprises an object, including references
to other objects, is stored in the byte stream in such a way that
upon reconstitution the object is returned to its exact state before
serialization [15]. It is serialization that facilitates the storage of
objects in a relational database.

B.1 Object Storage Schema

The storage approach for our persistent JavaSpace uses the
database as a metaphorical filing cabinet for objects. Instead
of building complex database schemas where tables express
relations between objects, we simply file objects of different
types into separate tables. However, our filing cabinet approach
cannot support the associative lookup techniques provided by
JavaSpaces without additional information about the type hi-
erarchies associated with the objects stored in the relational
database. Since objects represented in the space are only stored

4

as byte streams in the database, the standard structured query
language (SQL) does not support JavaSpaces template match-
ing semantics.

In order to effectively support JavaSpace queries based upon
templates, we maintain an external object hierarchy in our con-
ceptual filing cabinet. Figure 6 shows the relation between the
object hierarchy and its corresponding object tables. The ob-
ject hierarchy is persistently stored in the database as a form of
meta-data. Therefore, it does not have to be recreated across
multiple invocations of the JavaSpace. Also, our JavaSpaces
implementation stores additional meta-data in the database to
describe certain properties (such as lease duration, etc.) of ob-
jects that were recently placed in the space.

Hierarchy
Object

Object Tables

Banana

Clementine

Orange

Apple

Fruit

Banana

Clementine

Orange

Apple

Fig. 6. The object filing cabinet.

B.2 Implementation Details

Once we had determined our approach for object
storage in a relational schema, developing our JavaS-
paces service became as simple as implementing the
net.jini.space.JavaSpace interface. Refer to [1]
and [10] for a overview of the JavaSpaces API.

Algorithm writeEntry(�)
(� writes an entry to a JavaSpace �)
Input: A net.jini.core.entry.Entry �
Output: A net.jini.core.lease.Lease �
1. if ��� nil
2. then stop (� do not write blank entries �)
3. else write � to the space and assign lease �
4. return �
Fig. 7. Algorithm writeEntry.

At an abstract level, we can view our JavaSpace as im-
plementing the three primary JavaSpaces operations, write,
readIfExists, and takeIfExists, with the two algo-
rithms writeEntry and findEntry. The algorithm for
writeEntry is presented in Figure 7. The high-level algo-
rithm for findEntry is provided in Figure 8.

Since the findEntry algorithm only returns an object if it
exists in the space at the time of the request, it accurately de-
scribes the non-blocking readIfExists and takeIfEx-
ists operations. The waitForEntry algorithm can easily
use findEntry to implement the blocking read and take

Algorithm findEntry(�)
(� finds an entry in a JavaSpace matching a template ���)
Input: A net.jini.core.entry.Entry template �
Output: A matching net.jini.core.entry.Entry �
1. if ��� nil
2. then return any entry � (� nil template matches any en-

try �)
3. else if found an entry � that matches template �
4. then remove � from space if taking
5. return �
6. else return nil (� return nil if no match found �)
Fig. 8. Algorithm findEntry.

operations provided by a JavaSpace. Figure 9 depicts the al-
gorithm for these functions. For a detailed discussion of our
implementation of the JavaSpace interface, please refer to [7].

Algorithm waitForEntry(�	��
)
(� waits for period
 for an entry matching a template ���)
Input: A net.jini.core.entry.Entry template �
Input: A time period

Output: A matching net.jini.core.entry.Entry �
1. repeat
2. let � be the value returned from findEntry(�)
3. until ��� nil or
 has expired
4. return �
Fig. 9. Algorithm waitForEntry.

B.3 Database Configuration

The current implementation of RDBSpace uses the MM
mySQL JDBC driver and the mySQL relational database man-
agement system (RDBMS) [16], [17]. Our JavaSpaces service
implementation uses standard SQL database queries to manip-
ulate the objects in the database. RDBSpace uses column index
optimizations to improve the performance of the JavaSpace op-
erations. Moreover, we have used a mySQL-specific optimiza-
tion that allows for the usage of asynchronous insert state-
ments during the processing of write operations. We believe
that there is the potential to incorporate a significant number of
other relational database performance enhancements to further
improve the efficiency of our space. RDBSpace dynamically
creates object tables as needed, and updates the object hierar-
chy accordingly. Each client refreshes its object hierarchy be-
fore every space operation in order to ensure that it contains the
latest information about the current type hierarchy.

IV. ANALYSIS

Sun Microsystems has developed an implementation of a per-
sistent JavaSpace calleded Outrigger. To effectively formulate
a comparison between our persistent JavaSpaces service imple-
mentation and Sun’s own persistent JavaSpace, we calculated
low-level input/output benchmarks with the help of the Tonic
benchmarking system [6]. Service scalability was measured us-
ing a number of systems with notably different hardware con-

Arnold, Kapfhammer, Roos: IMPLEMENTATION AND ANALYSIS OF A JAVASPACE SUPPORTED BY A RELATIONAL DATABASE 5

figurations. Each machine was connected via 100 MB/s full
duplex on board Ethernet to a semi-loaded local area network.
In an attempt to abstract the JavaSpaces services from all other
Jini components, an independent machine was configured to act
as both the lookup host and the service code-base.

From this configuration we began our first experiment to for-
mulate an overall comparison of the performance differences
between the two implementations. The first test, called the Null
IO benchmark, attempts to show the raw speed of an implemen-
tation by performing space operations using a small object of
that was only 343 bytes after serialization. The test recorded
the average amount of time needed to sequentially write and
take 100 small objects from a space over 10 iterations. An
RDBSpace and a JavaSpace were both started on an experiment
machine, and Tonic was run from a remote control machine.
The test was repeated for each implementation on all experi-
ment machines, and the benchmarks were recorded. The results
are displayed in Figure 10.

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Outrigger (writes/sec)
Outrigger (takes/sec)
RDBSpace (writes/sec)
RDBSpace (takes/sec)

Ultra 1
(170 MHz)

Ultra 1E
(170 MHz)

Ultra 5
(360 MHz)

Ultra 10
(300 MHz)

Ultra 10
(333 MHz)

Ultra 10
(360 MHz)

Fig. 10. Results of the Null IO benchmark.

Our initial experiments show that Outrigger performs bet-
ter than RDBSpace on a wide variety of different workstations.
However, it is important to note that both Outrigger and RDB-
Space scale when they are executed on machines with increas-
ingly better hardware configurations. It is interesting to note
that RDBSpace always performs more write operations per
second than take operations. This characteristic is due to
the fact that RDBSpace adheres to a hybrid architecture during
writes and a server-centric architecture during takes. When
a small object is placed inside of our JavaSpace through the us-
age of the write operation, the direct access to the relational
database back-end appears to improve performance.

In order to further explore the strengths and weaknesses of
RDBSpace, our second performance test was conducted using
large object during space operations. This test, called the Ar-
ray IO benchmark, utilizes an array of 1000 double values that
are approximately 8485 bytes after serialization. Our test envi-
ronment was configured in exactly the same manner as the one

that was used during the Null IO benchmark. The results of the
experiment are displayed in Figure 11.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Outrigger (writes/sec)
Outrigger (takes/sec)
RDBSpace (writes/sec)
RDBSpace (takes/sec)

Ultra 1
(170 MHz)

Ultra 1E
(170 MHz)

Ultra 5
(360 MHz)

Ultra 10
(300 MHz)

Ultra 10
(333 MHz)

Ultra 10
(360 MHz)

Fig. 11. Results of the Array IO benchmark.

Our second experiment also showed that Outrigger performs
better than RDBspace on many different types of machines.
Once again, we see that both Outrigger and RDBSpace scale
when the space is moved to a higher performance workstation.
In this experiment, it is important to observe that RDBSpace al-
ways performs more take operations per second than write
operations. Interestingly, this is exactly the opposite of the be-
havior that was observed during the usage of the Null IO bench-
mark. As noted in Section III-B.1, our implementation of RDB-
Space must write meta-data to the relational database to accu-
rately capture the complete semantic meaning of a Java object.
Apparently, the size of the the meta-data and the actual object
detract from any perforance gains that could be realized through
the usage of the hybrid architecture. Clearly, RDBSpace is able
to take more objects per second because it is not responsi-
ble for actually returning all of the meta-data to the requesting
client.

In our next experiment, we varied the number of objects that
were sequentially written to Outrigger and RDBSpace. In this
experiment, we used both null objects and double arrays of
size 1000. Furthermore, we chose to perform each benchmark
on a Sun Ultra 10 360 MHz workstation. The results of this
experiment are shown in Figure 12. Since the current imple-
mentation of RDBSpace does not use the snapshot operation
to streamline the frequent reading or taking of the same Java ob-
ject, it does not perform as well as Outrigger. Indeed, Outrigger
is able to perform more read and take operations per second
as the number of sequentially written objects increases. Clearly,
this is because Outrigger can avoid the frequent serialiazation of
Java objects that must be incurred by RDBSpace.

V. CONCLUSION

The current implementation of RDBSpace does not attain the
performance benchmarks that have been set by Sun’s imple-

6

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200
100 Objects
500 Objects
1000 Objects
1500 Objects
2000 Objects

OUT OUT RDB RDB

NullIO

Even: takes/sec

Odd: writes/sec

OUT OUT

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

RDB RDB

ArrayIO

Fig. 12. Results from the Number of Objects Benchmark.

mentation of a persistent JavaSpace. However, RDBSpace does
exhibit scalability when the service is moved to higher perfor-
mance host machines. We believe that RDBSpace, in its current
form, shows potential for being competitive with other persis-
tent spaces. Also, the native data preservation features provided
by our service, such as simple backup facilities and data replica-
tion for increased availability, add to the significance of RDB-
Space. Moreover, the replication facilities provided by standard
relational database backends provide an avenue for easily intro-
ducing fault tolerance into JavaSpaces. In future research, we
plan to implement the snapshot operation in RDBSpace and
then empirically evaluate the benefits of using this operation.
Also, we would like to experiment with the usage of RDBSpace
is several real-world applications.

REFERENCES

[1] Eric Freeman, Susanne Hupfer, and Ken Arnold, JavaSpaces: Principles,
Patterns, and Practice, Addison-Wesley, Reading, Massachusetts, 1999.

[2] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on
distributed computing,” Tech. Rep. SMLI TR-94-29, Sun Microsystems
Laboratories, Inc., November 1994.

[3] Nicholas Carriero and David Gelernter, “A computational model of every-
thing,” Communications of the ACM, vol. 44, no. 11, pp. 77–81, Novem-
ber 2001.

[4] David Gelernter and Nicholas Carriero, “Coordination languages and their
significance,” Communications of the ACM, vol. 35, no. 2, pp. 97–107,
February 1992.

[5] David Gelernter, An Integrated Microcomputer Network for Experiments
in Distributed Programming, Ph.D. thesis, SUNY Stony Brook, Depart-
ment of Computer Science, 1983.

[6] Michael S. Noble and Stoyanka Zlateva, “Scientific computation with
javaspaces,” in Proceedings of the 9th International Conference on High
Performance Computing and Networking, June 2001.

[7] Geoffrey Arnold, “Trading space: Implementation and analysis of a re-
lational database javaspaces service,” Tech. Rep. CS02-01, Allegheny
College, Department of Computer Science, March 2002.

[8] Jakob Eg Larsen and Jesper Honig Spring, GLOBE: A Dynamically Fault-
tolerant and dynamically scalable distributed tuplespace for heteroge-
neous, loosely couple networks, Ph.D. thesis, University of Copenhagen,
Department of Computer Science, October 1999.

[9] GigaSpaces Technologies Ltd., “Gigaspaces platform,” 2002,
http://www.gigaspaces.com/index.htm.

[10] Scott Oaks and Henry Wong, JINI in a Nutshell, O’Reilly and Associates
Inc., Sebastopol, California, 2000.

[11] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann
Wollrath, The Jini Specification, Addison-Wesley, Inc., Reading, MA,
1999.

[12] Jan Newmarch, Jan Newmarch’s Guide to JINI Technologies, Jun 2001,
http://jan.netcomp.monash.edu.au/java/jini/tutorial/Jini.xml.

[13] Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems: Prin-
ciples and Paradigms, Prentice Hall, Inc., Upper Saddle River, NJ, 2002.

[14] Brian Zorman, “Creation and analysis of a javaspaces-based distributed
genetic algorithm,” Tech. Rep. CS02-18, Allegheny College, Department
of Computer Science, March 2002.

[15] John Zukowski, “Advanced object serialization,” Aug 2001,
http://developer.java.sun.com/developer/technicalArticles/ALT/serialization/.

[16] “MM mySQL JDBC drivers,” 2001, http://mmmysql.sourceforge.net/.
[17] Randy Jay Yarger, George Reese, and Tim King, MySQL and mSQL,

O’Reilly and Associates, 1999.

