
Automated Repair of Responsive Web Page Layouts
Ibrahim Althomali

University of Sheffield
Gregory M. Kapfhammer

Allegheny College
Phil McMinn

University of Sheffield

Abstract—Responsive Web Design (RWD) is a strategy that
allows developers to create webpages that adjust their layout
according to available screen size. Since modern web applications
must format correctly on the small displays of mobile devices
up to the large displays on desktop computers, and given this
dramatic difference in screen space, Responsive Layout Failures
(RLFs) — visual discrepancies that are only apparent at certain
screen sizes — can easily creep into live production webpages.
These can include, for example, HTML elements protruding off
the edge of the page or into one another as layout space becomes
scarce. This leaves webpages looking unprofessional at best and
non-functional at worst. This paper presents a technique for
repairing RLFs, implemented into a tool called LAYOUT DR. After
detecting an RLF, LAYOUT DR harvests layouts from the page’s
responsive design that are closest to the point of failure, but where
the RLF does not occur. It then transforms these layouts so that
they can be transplanted over the failure, effectively “hiding” the
original RLF from the end user. We evaluated LAYOUT DR on
19 subjects, containing 55 RLFs in total. LAYOUT DR could find a
suitable fix for each of them. When we conducted a human study
of the repairs, 92% of the participants preferred the repaired
version of the page compared to the original containing the RLF.

I. INTRODUCTION

Both the smartphone era and the surging popularity of
tablets and other web-enabled devices with touchscreens has
resulted in a serious challenge for developers and designers:
ensuring that their webpages format correctly on different, ar-
bitrary screen sizes. Since developing multiple static webpage
layouts for a small number of specific devices is no longer
feasible, web developers use Responsive Web Design (RWD)
strategies [24] to formulate a webpage layout that dynamically
adjusts to the amount of space available to render a page,
known as the viewport. However, since responsive web designs
have to accommodate a very broad range of viewport sizes —
from small mobile devices up to large desktop displays —
ensuring that a webpage adapts to all screen sizes and always
formats correctly is a difficult problem. Responsive Layout
Failures (RLFs), or visual discrepancies in the layout of a
responsive webpage, can creep into designs and may not be
noticed until webpages go live, often because they occur at
a few viewport sizes out of a very wide range. RLFs occur
because there is not enough space for aspects of the webpage’s
design to display correctly at a particular viewport size, or
range of sizes. RLFs include, for example, HTML elements
being rendered off the edge of the screen or crashing into one
another and overwriting each other’s content.

Repairing RLFs in responsive pages is a non-trivial problem,
and may involve one or two and up to tens or even hundreds
of HTML elements and CSS properties. Some RLFs may be

fixed by the judicious adjustment of only a few CSS properties
while others may require a significant re-working of the
page’s design before they are completely resolved [27]. This
repair process is complex and potentially time-consuming for
developers, for whom automated assistance is needed. While
there are automated repair approaches for non-responsive types
of presentational failures in webpages, namely cross-browser
issues [20], international presentation failures [10], [21], and
mobile-friendly issues [19], there has been no work (to the
best of our knowledge) on automatically repairing RLFs.

There has, however, been work on detecting problems in
responsive pages. One such tool, called REDECHECK [28],
provides several algorithms for identifying different types of
common RLF present in a responsively designed webpage.
Based on this initial detection process, we propose a tech-
nique for automatically repairing the RLFs discovered. We
implemented this technique into a tool called LAYOUT DR
(responsive layout failure detection and repair, pronounced
“Layout Doctor”). Given an RLF and the range of viewports at
which it occurs, LAYOUT DR sources two layouts either side of
the range not affected by the RLF. It then scales and transforms
them in the failure range to produce two potential “hotfixes”
that the developer can choose from to provide a repair for
the page. This hotfix addresses the symptoms of the RLF,
giving developers time to accurately diagnose the underlying
problem with the HTML and CSS and to then develop a
durable solution to the problem. LAYOUT DR differs from
the aforementioned approaches to other, non-responsive types
of webpage failure repair, in that it uses layouts from other
viewports of the page’s own design, as opposed to a reference
“correct” version of the webpage [10], [20], a formal layout
specification [17], or guidance from usability metrics [21].

We empirically evaluated LAYOUT DR and showed that it
could automatically and reliably created repairs for a wide
range of RLFs found in real responsively designed webpages.
A study with human participants revealed that, in 92% of
the cases, participants preferred the repairs generated by
LAYOUT DR as opposed to the original, buggy version of the
page, suggesting that the hotfixes rarely degrade page layout.
Furthermore, the presented tool never takes more than 40
seconds to produce a repair for any of the studied webpages.
The contributions of this paper are therefore as follows:
1) A technique, implemented into a tool called LAYOUT DR,
that, given a responsive webpage and an RLF, offers a de-
veloper the choice between repair(s) created with the page’s
own design at different viewports (Section III). 2) An empir-
ical study evaluating LAYOUT DR with 19 real responsively

Webpage

Viewport: 680 pixels wide

Webpage

Viewport: 681 pixels wide

Webpage

Viewport: 698 pixels wide

(a) Bower ✓ — Narrower Viewport (b) Bower ✗ — Viewport Protrusion RLF (c) Bower ✓ — Wider Viewport

Webpage

Viewport: 767 pixels wide

Webpage

Viewport: 768 pixels wide

Webpage

Viewport: 1223 pixels wide

(d) MidwayMeetup ✓ — Narrower Viewport (e) MidwayMeetup ✗ — Element Protrusion RLF (f) MidwayMeetup ✓ — Wider Viewport

Fig. 1. Webpages with Responsive Layout Failures (RLFs), visual discrepancies that are only apparent when the page is rendered at certain viewport widths.
For the Bower example, the “r” in the logo protrudes off the right edge of the viewport (part (b)). For MidwayMeetup, the first text input box protrudes into
the second, and its associated button is hidden and no longer clickable (part (e)). Both pages render without issues at narrower and wider viewport widths.

designed webpages involving 55 RLFs, showing that (a) it
reliably fixes those RLFs; (b) compared to the original, buggy
page, humans prefer the repaired ones; and (c) LAYOUT DR
is practical for developers to run, always taking less than
40 seconds to repair the studied RLFs (Section IV).

II. BACKGROUND

Responsive Web Design (RWD) is a design paradigm for
webpages in which the layout of HTML elements adjusts to
accommodate the space available [24]. RWD allows for a web
page to be rendered on a range of different devices with a
comparable user experience — including from the relatively
small screens of mobile phones to larger displays such as those
provided by modern desktop monitors. With RWD, developers
design webpages in consideration of a broad range of viewport
widths, or the amount of space available horizontally to render
the page in a web browser. This is because a properly designed
RWD page adjusts its content to fit in the horizontal constraints
of the browser so that the user does not have to pan the
page back and forth sideways to read and access content.
Importantly, this means that the user should only have to scroll
the page vertically. The typical assortment of viewport widths
a developer must consider ranges from the very small ones
of just 320 pixels wide for a mobile device, up to very wide
widths of 1400 pixels and beyond for larger desktop displays.

RWD utilizes the concepts of fluid grids, flexible media,
and CSS media queries for accommodating different viewport
sizes [24]. Fluid grids allow HTML elements to be arranged
into layouts that adjust in relation to the current viewport size,
while flexible media refer to images or videos that expand
and contract in size according to space available. CSS media
queries allow developers to switch groups of CSS rules on and
off depending on the configuration and size of the browser.

Despite these innovations, and frameworks such as Bootstrap
[3] and more recent alternatives (e.g., Bulma [4], Tailwind-
CSS [8], and WindiCSS [9]) that help developers to create
an RWD page, designing layouts so that they dynamically
adjust to fit each viewport width in a broad range of viewport
sizes is still challenging. Responsive Layout Failures (RLFs)
— visual discrepancies in the layout of an RWD page — are
frequent and find their way onto live sites, as reported by
Walsh et al. [28], who identified five common RLF types:
Viewport Protrusion occurs when elements cannot be accom-
modated within the space of the current viewport and spill
off the edge of the page. An example of this can be seen
with the Bower webpage depicted in Figure 1. At the wider
viewport shown in part (c), the “Bower” title in the masthead
is properly located within the confines of the space of the
page. However, as the viewport narrows in part (b), there is
no longer enough horizontal space, and the title no longer
fits. The “r” protrudes off the edge of the page. Viewport
protrusion potentially forces the end user to pan sideways to
access content, thereby breaking one of the key principles of
RWD. At a narrower viewport width, shown by part (a), the
responsive layout reformats to fit the more confined space.
Element Protrusion occurs when an HTML element is con-
tained within the space of another, but as the viewport width
decreases the child element does not have sufficient space to
accommodate its contents within the constraints of its parent.
As such, the child element protrudes out of its container. An
example of element protrusion is shown by Figure 1(e) with
the MidwayMeetup webpage. At the wider viewport, shown by
part (f), the text box and “Add” button in the left column fit
into the space afforded to it. In part (e), however, there is no
longer enough horizontal space in the column, so the textbox
protrudes out, and the “Add” button is hidden behind another

element. The webpage reformats correctly for tighter screen
sizes with even less horizontal space, as shown by part (d).

Element Collision is when the viewport width reduces such
that elements do not have the required space to accommodate
their contents without being rendered on top of other elements.

Wrapping Failures occur when HTML elements are supposed
to be rendered together on one line (for example, the menu
items in the navigation bar of a page), but as the viewport
width reduces, they can no longer fit side by side, causing
one or more elements to wrap to a new line on the page.

Finally, Small-Range Failures occur when a page’s layout
chaotically changes for a small number of contiguous viewport
widths, often due to off-by-one errors made by developers
when encoding media queries in the CSS of a webpage. For
example, CSS rules pertaining to the media queries @media

(min-width: 768px) and @media (max-width: 768px)

would both be active at a viewport width of 768 pixels, since
the ranges defined by both queries are inclusive. When rules
are switched on that the developer did not intend, the design
of a page can look very erratic for particular viewport widths.

To automatically detect these issues, Walsh et al. [28]
proposed a data structure called the Responsive Layout Graph
(RLG). The RLG tracks the relative alignment of a web-
page’s HTML elements with respect to one another as the
viewport width of the page changes. Walsh et al.’s method
builds the RLG by sampling the layout of a webpage at
intervals throughout a range of viewport widths, leveraging
the Document Object Model (DOM) at each width sampled
to retrieve the coordinates of each HTML element. It employs
a binary search to locate precise viewport widths between
intervals relating to exact points of layout change. Walsh et al.
also proposed algorithms that use the RLG to identify each
of the five common responsive layout failures previously
introduced, reporting the viewport range of the RLF and details
about the elements involved. They implemented all of these
techniques into a tool called REDECHECK [29]. Even though
REDECHECK reliably detects the failures in a responsive page,
a developer must manually fix the CSS problems. That is,
REDECHECK does not automatically repair a reported RLF.

In general, fixing RLFs is a non-trivial problem. Tens or
hundreds of HTML elements may be involved, each with an
individual set of CSS properties that may vary depending
on the viewport width. For some RLFs, only a single CSS
property may need to be adjusted. Other RLFs may have
major implications for the overall design of the page, requiring
significant re-working of the HTML and CSS code [27].

III. AUTOMATED RLF REPAIR WITH LAYOUT DR

This section introduces an automatic responsive layout fail-
ure repair technique, which we implemented into a tool named
“LAYOUT DR” (responsive layout failure detection and repair,
pronounced “Layout Doctor”). The presented technique first
determines whether there are RLFs in a responsive webpage.
If any RLFs are found, it reports their type (according to the
categories defined in Section II) and the RLF range, denoted

{failmin . .failmax}, where failmin is the smallest viewport
width where the RLF occurs and failmax is the largest one.

The key idea behind our technique is to harness the webpage
layouts on either side of the failure range as a basis for the
repair. We refer to these layouts as the bordering layouts.
The narrower bordering layout exists at the viewport width
failmin−1, while the wider bordering layout exists at the
viewport width failmax+1; that is, they are at either side of the
RLF range. From the entire range of viewport widths that the
webpage can be viewed at, the bordering layouts of the failure
represent the ones likely to most closely represent the layout
where the RLF occurred, but without, themselves, exhibiting
the same failure. LAYOUT DR then selects a bordering layout
and extracts the HTML elements. Each viewport width within
the failure range uses a version of this layout that is dynami-
cally scaled to that width using an automatically created CSS
patch that overrides the prior layout behavior of the page.
LAYOUT DR thereby creates a temporary “hotfix” for a live
webpage that can then afford a developer the time needed to
realize a properly engineered patch for the page’s CSS. The
webpages in Figure 1 show the potential merit in our premise.
The narrower and wider viewport widths either side of the
RLF are layouts that could be scaled up or down to fit the
viewport width with the RLF, thus covering over the failure.

In the following, we describe the operation of our technique
in more detail, as summarized by Figure 2, which provides an
overview schematic of its implementation in the LAYOUT DR
tool. As shown by the figure, LAYOUT DR takes a responsive
webpage, and the responsive range of viewport widths it is
designed to be displayed for, {rangemin . .rangemax}.

RLF Detection. Figure 2 shows that our technique begins by
taking a responsively designed page and running it through a
process called RLF Detection, which seeks to find any RLFs
that may be present. For this step, we re-implemented RE-
DECHECK [29] and the RLF detection routines introduced in
Section II. We re-implemented REDECHECK to streamline the
incorporation of its algorithms into our tool, while also giving
us the chance to fix some bugs noted by Althomali et al. [13]
and update its outdated libraries. For example, REDECHECK
uses versions of Selenium to drive Firefox that were released
in 2016; in contrast LAYOUT DR uses a recent release of the
more modern Puppeteer to drive the Chromium browser. RLF
Detection outputs a set of one or more reports for a webpage
and its intended responsive range. Each report refers to a
specific detected RLF, comprising its type (one of Viewport
Protrusion, Element Protrusion, Element Collision, Wrapping,
or Small Range); details about the HTML elements involved
in the RLF; and the RLF range, {failmin . .failmax}, or the set
of viewports in which the layout failure occurs.

RLF Filtering. The next step of the process, RLF Filtering,
is a manual one that happens outside of the LAYOUT DR
tool. Since RLF detection is prone to false positives, a human
must examine the RLF reports and check whether each RLF
is visibly evident and requires repair. This is because DOM-
based RLF detection, such as that employed by REDECHECK,

RLF Detection

Repair Generation

Patch Sourcing

Patch Generation

Patch Injection

Repair Confirmation

LAYOUT DR
Webpage

May
Contain
RLFs

{rangemin . .rangemax}

Webpage

Repaired
Option 2

Webpage

Repaired
Option 1

RLF
Filtering

Fig. 2. Overview schematic showing the operation of LAYOUT DR.

is particularly prone to a class of false positives known as
non-observable issues — issues that are apparent in the DOM
but which are not visibly evident in the page itself [13]. For
instance, two HTML elements may overlap, as discovered
from checking the coordinates of each element in the DOM,
but if they are both transparent and the content of one does not
overwrite that of the other, the collision of elements will not be
visible to a human looking at the page. Since the focus of this
paper is on RLF repair, we judge that this is not a significant
issue for the presented technique. However, in the future, we
plan to implement techniques that extend REDECHECK to
alleviate these issues in LAYOUT DR, such as VERVE [13],
which applies further visual checks to discern visible RLFs
in these kinds of situations. It is worth noting, however, that
even the VERVE tool is not 100% accurate, so it is inevitable
that some level of manual checking may still be required.
Repair Generation. LAYOUT DR then sets about repairing the
RLF(s), identified by the RLF Filtering step. The four stages
of repair, as shown by Figure 2, are Patch Sourcing, Patch
Generation, Patch Injection, and Repair Confirmation.
Patch Sourcing. The presented technique works to produce
a repair by sourcing a layout from the narrower and wider
bordering layouts at failmin−1 and failmax+1, respectively.

Each bordering layout must pass LAYOUT DR’s applica-
bility test to ensure it is acceptable for use in a repair.
First, its viewport width must be within the responsive
range, {rangemin . .rangemax}, originally sampled by the fail-
ure detection component. That is, failmin−1 ≥ rangemin∧
failmax+1 ≤ rangemax . Suppose the responsive range of a
page is 320–1400 pixels, and LAYOUT DR detects an RLF
between 320 and 600 pixels wide. As the layout at the viewport
of 319 pixels wide is not part of the original responsive
range (i.e., failmin−1 < rangemin), this bordering layout is
not used, and patch generation from the narrower bordering
layout (failmin−1) does not proceed. Equally, if the failure
occurred at the viewports between 1000 and 1400 pixels
wide, the layout at the viewport width at 1401 pixels would
similarly not be considered since failmax+1 > rangemax .
While, practically, the layout at 319 pixels could form a
viable repair, the responsive range of the page inputted to our

technique is considered to be the range of valid viewports at
which it may be viewed. Furthermore, the cut-off must be
established somewhere, since even if rangemin =1, the layout
at 0 pixels wide would not be usable by LAYOUT DR.

The second test is that a bordering layout must be free of
a transformed version of the RLF under repair. For example,
an element protrusion failure may transform into a viewport
protrusion failure if, at the narrower bordering layout, an
element protrudes not only out of its container, but also out of
the viewport itself. Our tool, and the REDECHECK tool before
it, will report these as two distinct RLFs with two different
ranges. Therefore, the patch sourcing element of LAYOUT DR
performs a check on the DOM of the bordering layout —
depending on the type of failure — to ensure that it is suitable
for use as a patch. For example, when handling element
protrusion, LAYOUT DR checks that in the bordering layout,
the child element does indeed reside inside its containing
element, and thus has not spilled out of the viewport as well.

Assuming one or both of the bordering layouts is a viable
layout according to the two aforementioned criteria, the tech-
nique proceeds to generate one or two patches for the failure. If
neither is suitable, then LAYOUT DR fails to produce a repair.
Patch Generation. Patch generation begins by collecting the
CSS from each bordering layout (if applicable), rescaling it,
and applying it to all viewports in the failure range. Figure 3
illustrates the stages of the patch generation process with
wireframe webpage layouts, starting with a page containing
an RLF (part (a) of the figure), where the element marked “D”
collides with the element marked “E”. Using the two bordering
layouts (the narrower shown in part (b) of the figure, the wider
in part (f)), our approach generates two possible repairs for the
RLF that the developer can choose from to fix the page.

To produce a repair from a bordering layout, the tool
drives a browser to open the webpage with the viewport
set at that layout’s particular viewport width, and then ex-
tracts the CSS properties of all of its elements. These CSS
properties are a result of the browser resolving all CSS
rules and property settings defined in the webpage’s CSS
files and through inline style HTML elements. To do this,
LAYOUT DR embeds JavaScript code into the page to invoke
the getComputedStyle() method on all elements of the
page. This particular method returns all possible CSS settings
(including computed positional and dimensional values in
pixels) associated with each HTML element in the page after
the browser applies all CSS styles from the webpage’s CSS
style files, HTML style elements, and any relevant browser
default style settings. Starting at the root element of the DOM
(i.e., the html element), LAYOUT DR traverses the DOM to
capture all the CSS properties of each element in the tree. The
CSS snippet in Figure 3(k) shows CSS properties of some of
the HTML elements of the wider bordering layout in 3(f).

Since LAYOUT DR now has all the CSS properties needed
to reproduce the layout at another viewport width, it proceeds
to generate a CSS patch that can be applied to the page. As
a first step, it creates a CSS selector for each HTML element
in the bordering layout that will become part of the repair, so

Webpage

850 pixels wide

A B C DE
- - - - - - -
- - - - - - -

(a) Page with RLF

Webpage

799 pixels wide

Dropdown ∇

- - - - -
- - - - -

(b) Narrower bordering layout

Webpage

850 pixels wide

Dropdown ∇

- - - - -
- - - - -

(c) CSS copied

Webpage

850 pixels wide

- - - -

(d) Layout scaled

Webpage

850 pixels wide

Dropdown ∇

- - - - -
(e) Layout anchored

Webpage

901 pixels wide

A B C D E
- - - - - - -
- - - - - - -

(f) Wider bordering layout

Webpage

850 pixels wide

A B C D E
- - - - - - -
- - - - - - -

(g) CSS copied

Webpage

850 pixels wide

A B C D E
- - - - - - -
- - - - - - -

(h) Layout scaled

Webpage

850 pixels wide

A B C D E
- - - - - - -
- - - - - - -

(i) Layout anchored

...
D {
width: 80px;
height: 80px;
...

}
E {
width: 80px;
height: 80px;
...

}
...

(j) CSS of 850 pixels wide

...
D {
width: 100px;
height: 100px;
...

}
E {
width: 100px;
height: 100px;
...

}
...

(k) CSS of 901 pixels wide

...
@media (min-width: 800px) and (max-width:900px)
{
D {
width: 100px; !important;
height: 100px; !important;
...

}
E {
width: 100px !important;
height: 100px !important;
...

}
...

}
...

(l) Layout applied to failure range

...
@media (min-width: 800px) and (max-width:900px)
{
D {
width: 100px !important;
height: 100px !important;
...}

...
}
...
@media (min-width: 850px) and (max-width:850px)
{
html {
transform: scale(850/901) !important;
transform-origin: top left !important;

}
}
...

(m) Scaling and anchoring added to patch

Fig. 3. A wireframe example of the steps involved in producing repair, with CSS snippets for the patch generated using the page’s wider bordering layout.

that the properties can be reapplied to the same element they
were extracted from. For this, our technique uses the XPath
of each element to generate a unique CSS selector which
will encompass all the properties of an individual element
in the patch. Since the CSS properties in the patch will be
competing with others from the code base of the webpage,
the !important flag is added to all properties in the patch
to override any competing declarations. With the selectors
set to target each element, the tool must now target the
viewports for which the patch should take effect. Otherwise,
the patch will be applied to all viewports. To restrict the
patch to the failure range, the selectors and their properties are
encapsulated within a media rule spanning the failure range.
These modifications to the CSS are demonstrated by part (l) of
Figure 3, with the failure range appearing in the media query
segment (the line beginning “@media. . . ”) as 800–900 pixels.

Without further improvements to the patch, the webpage
will cease to be responsive where the patch is applied. This is
because the patch contains absolute positional values (i.e., any
CSS property measured in pixels) specific to a single viewport
— the viewport width of a particular bordering layout — and
need adaptation to “fit” into a smaller viewport size if the
wider bordering layout is under adaptation, or seamlessly use
all the space if it is the narrower layout. To scale the layout
to occupy the full viewport width and nothing more or less,
our technique uses the scale() CSS method in conjunction
with the transform CSS property. The transform property

modifies the coordinates of the associated element to rotate,
scale, skew, or translate from its original coordinates. The
technique uses the scale() method to scale an element’s
coordinates to be smaller or larger than the originals, resulting
in a zoom effect. Since the application of this property and
method on an element exceeds the element itself and affects
all descendant elements in the DOM tree, the tool applies the
scale() property on the root element of the DOM, the html

element, to scale all elements of the layout appropriately. This
scale value is calculated based on the ratio of the browser’s
“current” viewport to the bordering layout viewport, to make
the patch itself, when applied to the webpage, responsive.
These adjustments are shown by Figure 3(m). For the example
viewport width of 850 pixels, elements are scaled with the
amount 850/901 (i.e., this specific repair viewport width,
divided by the width of the bordering layout used to generate
the patch, 901 pixels). The full patch contains more similar
declarations for the other viewport widths in the RLF range.

Although our technique scales the bordering layout using
the transform property, the scaled layout transformation for
the wider bordering viewport is anchored to the center of the
original coordinates. The result is a webpage with empty space
to the top, right, bottom, and left of the page. Parts (d) and (h)
illustrate the result of applying the scale() method on the
example layout from parts (c) and (g) respectively. The result
is a scaled down version of the layout that shrinks to the center.
Worse than the empty space is the portion of the page that

Webpage

Viewport: 767 pixels wide

Webpage

Viewport: 767 pixels wide

Webpage

Viewport: 767 pixels wide

(a) Original webpage containing RLF ✗ (b) Repair using the narrower bordering layout ✓ (c) Repair using the wider bordering layout ✓

Fig. 4. Two repairs produced by LAYOUT DR for the DjangoREST subject as part of this paper’s empirical evaluation.

will not be visible without scrolling horizontally and breaking
one of the responsive design principles. To resolve this issue,
LAYOUT DR also adds the transform-origin CSS property
to the patch to position the scaled layout appropriately at
the top-left of the browser window. This property identifies
the position around which a transformation is applied using
the transform property. This addition is shown as the last
declaration in the snippet of the patch shown by part (m) of
the figure, anchoring the scaled layout to the proper location,
as seen in parts (i). Along with the repair generated from the
narrower bordering layout, these two final repairs form two
options that the developer can use to fix the webpage.

Patch Injection. LAYOUT DR proceeds to inject each patch
into the webpage. LAYOUT DR achieves this by creating a
style element that contains the CSS code of the patch and
attaches it to the end of the DOM tree. On refreshing the
page, the browser then uses the additional CSS comprising
the patch to render the scaled bordering layout at viewports
within the original failure range. The patch is then assessed
by LAYOUT DR in the next stage, Repair Confirmation.
LAYOUT DR then removes the style element from the page.

Repair Confirmation. Re-using the RLF detection algorithms,
LAYOUT DR checks the RLF range of the repaired page to
confirm that the repair has successfully removed the original
responsive layout failure. If both bordering layouts led to
successful patches, the developer may pick the one to use.
Otherwise, if there was only one successful patch, then LAY-
OUT DR applies it by default to the final page. Figure 4 gives
the DjangoREST subject used in the evaluation. Part (a) shows
obvious visual discrepancies, while parts (b) and (c) show two
repairs produced by LAYOUT DR, with patches respectively
sourced from the narrower and wider bordering layouts.

IV. EVALUATION

To evaluate Section III’s technique, we implemented it into
the LAYOUT DR tool and applied it to 19 webpages that
contained a total of 55 RLFs. Since the first author’s thorough
visual investigation always confirmed that LAYOUT DR was

successful at automatically fixing each RLF, we designed the
empirical study to answer these three research questions:
RQ1: Which bordering layout is likely to result in a repair?
This RQ aims to evaluate how effective LAYOUT DR is at
repairing failures in responsive webpages, investigating which
bordering layout (i.e., the narrower bordering layout or the
wider bordering layout) tends to result in successful repairs.
RQ2: Do humans prefer the repaired version of the webpage
produced by LAYOUT DR compared to the version exhibiting
the failure? Along with determining if LAYOUT DR’s repairs
are acceptable to humans viewing the webpage, this RQ also
investigates whether humans prefer LAYOUT DR’s repairs at
the narrower bordering layout or the wider bordering layout.
RQ3: How long does LAYOUT DR take to generate patches?
This RQ intends to find out if the time taken by LAYOUT DR
is reasonable for developers who wish to apply it in practice.
Tool and Experimental Runtime Environment. We imple-
mented LAYOUT DR in JavaScript and ran it using Node
version 14.15.4 with NPM version 6.14.10 installed on a
workstation running the 64-bit version of the Ubuntu 20.04.2
operating system. The workstation had 16GB of RAM and
an Intel Core i7-4720HQ processor. LAYOUT DR also used
Puppeteer version 4.0.1, a Node library with an API to control
a Chromium browser that we configured to run in headless
mode, with a fixed viewport height of 1000 pixels. To as-
sess LAYOUT DR’s effectiveness at producing and confirming
patches for the viewports of mobile devices up to desktop
monitors, we set a page’s responsive range to 320–1400 pixels.
Subjects. To answer the RQs we needed a subject set of web-
pages containing RLFs for our technique to repair. To compile
our subject set, we began with the 26 webpages studied by
Walsh et al. [28] and available in their online repository [6],
which contains examples of responsive webpages in which
their REDECHECK tool was able to find real examples of
RLFs. To this we added further webpages harvested from the
web. In particular, we sought to find examples of RLFs in the
websites of open source tools, using the search terms “open
source software” and “top open source software”, while also

manually searching for webpages linked from the repositories
of software with high numbers of stars hosted on GitHub.
We used GNU Wget version 1.20.3 to download all candidate
webpages. and ran LAYOUT DR with these examples and
studied the detected RLFs. As part of the necessarily manual
RLF Filtering phase (see Section III), we discarded RLF
reports for which we could not see a visual discrepancy in the
layout of the page. LAYOUT DR’s detection routines are based
on REDECHECK, which is DOM-based, and therefore prone
to reporting non-observable issues, a prevalent form of false
positive [13]. For instance, two HTML elements may overlap,
as discovered from the DOM, but if they are both transparent
and the content of one does not overwrite that of the other, the
collision of elements will not be visible to a human looking
at the page. Since the LAYOUT DR tool is primarily focussed
on repair, this is not a major issue. However, in the future, we
intend to implement the techniques that extend REDECHECK
to alleviate these issues, such as VERVE [13], which applies
extra visual checks to discern these kinds of situations. We
further discarded reports when we found a visual “disturbance”
that did not significantly influence the page in a way that a
human developer would want to repair. An example of this is
when there is not enough horizontal space to fit every social
media icon side-by-side in the footer of the page, with one of
the icons wrapping to the new line, thus triggering a wrapping
RLF. However, since the icons are still centered, this wrapping
behavior is likely not worthy of a developer’s further attention.

Only considering the definite and visually evident RLFs
resulted in a total of 55 from 19 webpages overall, comprising
9 pages from Walsh et al.’s original subject set and 10 unique
to this paper. Table I lists these webpages and the RLF counts,
revealing that these pages vary in their size and complexity and
thus form a diverse subject set suitable for this study.

Methodology. To answer RQ1, we ran the Repair Generation
stage of LAYOUT DR on the 19 webpages. We recorded
the bordering viewport layouts (i.e., narrower and/or wider)
that it used to generate repairs (i.e., passed both the tool’s
applicability tests and its automated repair confirmation check
following the repair’s creation). The first author then visually
inspected each repair to check that (a) it had correctly removed
the original RLF; and (b) had not introduced more RLFs.

To determine whether the repairs were acceptable to human
users in general, and to answer RQ2, we conducted a human
study on Amazon Mechanical Turk [1]. We designed a web-
based questionnaire where participants were asked to judge
the repairs. The basis of each question is an RLF that was
fixed by LAYOUT DR, with a repair generated from both the
narrower and wider bordering layout. The questionnaire asked
participants to compare an image of the original webpage
containing the RLF and images of each of the two repairs,
and to select which version of the page they prefer in each
case. To maintain as much authenticity as possible within
the scope of the questionnaire, we did not scale the snapshot
images of the different webpage versions, presenting images
that were the same width as the originals. Since it was not

TABLE I
SUBJECT WEBPAGES USED IN THE EXPERIMENTS

In this table, #RLFs is the number of RLFs found in the subject, #HTML is the number
of HTML elements on the page, and #CSS is the number of CSS properties for each of
those elements. Note that a subject may no longer be available in its studied form at the
URL listed — please refer to our replication package for all of a subject’s details [7].

Subject Original URL #RLFs #HTML #CSS

3MinuteJournal 3minutejournal.com 4 80 5499
Ardour ardour.org 2 222 3774
Bottender bottender.js.org 5 243 2202
Bower bower.io 1 370 844
BugMeNot bugmenot.com 1 42 658
ConsumerReports consumerreports.org 7 1042 8005
Django djangoproject.com 1 242 4732
DjangoREST django-rest-framework.org 1 610 3787
Duolingo duolingo.com 1 856 4260
ElasticSearch elastic.co/elasticsearch 2 1243 21467
Honey joinhoney.com/install 1 461 7903
HotelWiFiTest hotelwifitest.com 1 359 6746
MantisBT mantisbt.org 3 247 7731
MarkText marktext.app 15 560 1890
MidwayMeetup midwaymeetup.com 1 86 4147
OrchardCore orchardcore.net 5 234 6352
PepFeed pepfeed.com 1 343 7276
Selenium selenium.dev 1 286 4980
WillMyPhoneWork willmyphonework.net 2 782 6576

Total 55 8308 108829

possible to present whole webpages in their entirety without
vertical scrolling, we presented the images within a frame, so
that participants could scroll around the image as they would
a normal webpage in a browser window. The questionnaire
presented each image in a tab, allowing participants to flip
between tabs, comparing each image. When the RLF was not
at the top of the page, the questionnaire would present the
image automatically scrolled vertically to the position of the
failure, so that each version of the page could be compared
directly by switching tabs. Finally, if a participant’s screen was
not big enough to accommodate the width of the snapshot
and the questionnaire, the questionnaire displayed an error
message. Users needed to have a minimum screen resolution
of 1400×780 to accommodate both webpage screenshots and
the surrounding GUI elements of the questionnaire itself.

We used 20 RLFs from the 14 webpage subjects for the
human study, which were specifically the RLFs for which
LAYOUT DR successfully generated repairs for both the nar-
rower bordering layout and wider bordering layout of the
RLF. So as to mitigate the potential effects of fatigue af-
fecting participants, we limited each questionnaire to only ten
questions. Each questionnaire for each participant featured ten
questions randomly selected from the overall pool of 20. We
terminated the availability of the study on Mechanical Turk
after we had reached over 100 responses. Since Mechanical
Turk necessitates that we remunerate participants, we paid
them $1 for a median of just under 5 minutes of their time to
complete the questionnaire. The amount we paid was similar
to other studies in software engineering of a similar style and
length (e.g., [19], [32]). As part of controlling the quality of
the data from the survey, we added code to the web-based
questionnaire to monitor the number of clicks on each of the

TABLE II
BORDERING LAYOUTS FORMING REPAIRS

This table records the number of RLFs for a subject that has a particular
type of bordering layout (N, W, N|W, and N&W) used by LAYOUT DR for
a repair. The second figure (in parentheses) is the number of those layouts
manually verified as RLF-free (including the non-presence of further RLFs).
N and W count RLFs with applicable narrower and wider bordering layouts,
respectively; N&W counts RLFs with an applicable narrower and wider
layout, N|W counts RLFs with an applicable narrower or wider layout.

Subject #RLFs N W N&W N|W

3MinuteJournal 4 2 (2) 4 (4) 2 (2) 4 (4)
Ardour 2 0 (0) 2 (2) 0 (0) 2 (2)
Bottender 5 0 (0) 5 (1) 0 (0) 5 (1)
Bower 1 1 (1) 1 (1) 1 (1) 1 (1)
BugMeNot 1 0 (0) 1 (1) 0 (0) 1 (1)
ConsumerReports 7 2 (2) 7 (7) 2 (2) 7 (7)
Django 1 0 (0) 1 (1) 0 (0) 1 (1)
DjangoREST 1 1 (1) 1 (1) 1 (1) 1 (1)
Duolingo 1 1 (1) 1 (1) 1 (1) 1 (1)
ElasticSearch 2 1 (1) 2 (2) 1 (1) 2 (2)
Honey 1 1 (1) 1 (1) 1 (1) 1 (1)
HotelWiFiTest 1 1 (1) 1 (1) 1 (1) 1 (1)
MantisBT 3 2 (1) 3 (3) 2 (1) 3 (3)
MarkText 15 3 (2) 15 (2) 3 (0) 15 (4)
MidwayMeetup 1 1 (1) 1 (1) 1 (1) 1 (1)
OrchardCore 5 0 (0) 5 (5) 0 (0) 5 (5)
PepFeed 1 1 (1) 1 (1) 1 (1) 1 (1)
Selenium 1 1 (1) 1 (1) 1 (1) 1 (1)
WillMyPhoneWork 2 2 (2) 2 (2) 2 (2) 2 (2)

Total 55 20 (18) 55 (38) 20 (16) 55 (40)

three tabs involving either the RLF or one of the repairs. To
account for the possibility of participants voting for an option
without viewing all of them first, we filtered the results to show
only the responses of the participants who clicked on each of
the tabs at least once, firing the JavaScript load event for each
of the webpage images in the questionnaire application.

To answer RQ3, we recorded the time taken, in milliseconds,
by LAYOUT DR in the Repair Generation phase on each of
the 19 webpage subjects in Table I. Finally, to obtain a reliable
average, we repeated these timing experiments 10 times.

V. ANSWERING THE RESEARCH QUESTIONS

Answer to RQ1. For each RLF listed in Table II, we
recorded whether each bordering layout formed the basis of
LAYOUT DR’s repair. Table II also presents how many repairs
pass the first author’s visual checks for being free of (a) the
original RLF and (b) any further RLFs that may have been
inadvertently copied into or created as part of the repair.

For all RLFs, LAYOUT DR could always use wider bor-
dering layout to generate a repair. However, for the narrower
bordering layout only 20 (36%) of the original 55 narrower
layouts passed the applicability test and were subsequently
used by LAYOUT DR to generate a repair. For the 35 RLFs
with bordering layouts that failed the applicability test, 17 had
a viewport range starting at 320 pixels wide, for which the
narrower bordering layout was excluded by LAYOUT DR. For
the other 18 RLFs, the failure transformed to a different RLF
type at the narrower viewport and so were also inappropriate,
thus causing LAYOUT DR to discard them as patch sources.

Further manual inspection revealed that not all repairs were
free of interference from additional RLFs. In each case, this
was because of additional RLFs in the page that happened
to be present in the bordering layout used as part of the
repair. LAYOUT DR repairs each RLF independently; it does
not currently account for other RLFs detected/filtered prior to
the repair process. (We leave this for future work, while RQ2
addresses whether these repairs were acceptable to human par-
ticipants in general.) However, as Table II shows in the “N|W”
column, 40 of the 55 RLFs had at least one viable repair that
was also free of some other RLF. The majority of these repairs
were sourced from the wider bordering layout. RLFs for which
neither repair was free of additional RLFs were found only in
3 of the 19 subjects — Bottender, MantisBT, and MarkText
— the subjects that had some of the higher numbers of RLFs
detected in them, and therefore are prone to this issue.

Conclusion for RQ1. The wider bordering layout is more
likely to result in a repair than the narrower bordering layout.

Answer to RQ2. Table III gives the 20 RLFs and the 14
webpage subjects from which we drew them. They are, specif-
ically, the RLFs from Table II where LAYOUT DR generated
two repairs sourced from each of the narrower and wider
bordering layouts. This table shows that the set of RLFs
includes failures of each of the different types identified in
Section II, demonstrating their suitability for the human study.

In total, 101 participants took our questionnaire. As ex-
plained in Section IV, we disregarded individual answers when
the participant did not view each image (i.e., the original page
containing the RLF and the two repairs generated from each
bordering layout) before responding. We hereafter refer to
non-disregarded answers as “votes” for a particular version
of a webpage — either the original or a particular repair —
only accepting a vote when the participant did view each
questionnaire tab before answering. Overall, the participant
responses to our questionnaire resulted in a total of 738 votes.

Table III shows an overwhelming preference for one of
the repairs compared to the original version of the webpage
containing the RLF. For all RLFs, the number of votes for the
original page was small, and never greater than either repair.
This result suggests that LAYOUT DR effectively produces a
hotfix that does not degrade a webpage, giving developers
extra time to diagnose and resolve a responsive layout failure.

This was true even though, as noted in our answer to
RQ1, a few of bordering layouts themselves involved other
RLFs. Four of these RLFs involved repairs that had further
visible RLFs. The two Viewport Protrusion RLFs for MarkText
had further RLFs appearing in the repair generated from the
wider bordering layout; while the second wrapping RLF for
MantisBT had a further RLF in the repair generated for the
narrower bordering layout. For these, participants voted for
the repairs generated from the alternative layout, except for the
second Viewport Protrusion RLF for MarkText. Here, the RLF
in the wider bordering layout appears to have not been noticed
or regarded as insignificant by the participants. Both repairs
for the Element Protrusion RLF of MarkText had further RLFs.

TABLE III
NUMBER OF VOTES FOR THE ORIGINAL AND REPAIRED VERSIONS FOR

EACH SUBJECT AND RLF FEATURING IN THE HUMAN STUDY

In this table, “O” is the number of votes for original page involving the RLF,
“N” and “W” are votes for the repairs generated from the narrower and wider
bordering layouts, respectively, “N+W” is the sum of votes for both repairs.
In terms of RLF types, “EC” is Element Collision, “EP” is Element Protrusion,
“SR” is Small Range, “VP” is Viewport Protrusion, “W” is Wrapping.

Subject (RLF Type) O N W (N+W)

3MinuteJournal (EP) 3 7 25 (32)
3MinuteJournal (VP) 2 22 12 (34)
Bower (VP) 3 27 2 (29)
ConsumerReports (VP) 5 33 2 (35)
ConsumerReports (EP) 2 9 20 (29)
DjangoREST (VP) 3 6 29 (35)
Duolingo (VP) 4 8 25 (33)
ElasticSearch (EC) 6 9 21 (30)
Honey (EC) 3 11 27 (38)
HotelWiFiTest (VP) 1 22 10 (32)
MantisBT (W) 4 5 40 (45)
MantisBT (W) 4 10 26 (36)
MarkText (VP) 2 20 12 (32)
MarkText (EP) 6 20 8 (28)
MarkText (VP) 0 12 21 (33)
MidwayMeetup (EP) 1 15 24 (39)
PepFeed (VP) 3 20 10 (30)
WillMyPhoneWork (EC) 5 14 22 (36)
Selenium (W) 2 7 27 (34)
WillMyPhoneWork (SR) 1 15 23 (38)

Total 60 292 386 (678)
(8%) (40%) (52%) (92%)

Here also, the page with the original RLF was not the preferred
choice, since the repair presented one less visual issue.

Overall, the wider bordering layout was the preferred source
of the repair, scoring the most votes for 13 of the 20 RLFs.
We surmise this is because the wider layout is often most
similar to the one with the failure, while the narrower layout is
often a scaled-up “mobile” view of the webpage. We manually
analyzed the repairs to ascertain why participants may have
opted for the narrower repair in the instances they did, and
found that in four cases (i.e., the Viewport/Element Protrusions
for 3MinuteJournal, Bower, ConsumerReports, and MarkText)
the wider layout solved the protrusion but pushed elements
up to the edge of the viewport or their container, making the
narrower repair more appealing. Figure 1 evidences this issue
for the Bower RLF. Although the “r” in the logo is no longer
clipped in part (c) — and the RLF does not occur — it is still
on the right edge of the viewport boundary. For the remaining
cases, the wider layout was scaled down to the point that the
text was hard to read, which again makes the narrower repair
more appealing. Future work needs to create methods for better
taking into account these preferences of participants.

Conclusion for RQ2. Participants preferred a repaired ver-
sion of the webpage generated by LAYOUT DR over the
original page containing the RLF. Generally, participants
preferred the repairs created from the wider bordering layout
over those originating from the narrow bordering one.

Answer to RQ3. Figure 5 plots the time taken to repair the
RLFs listed in Table II. The plot shows that the time taken

never exceed 40 seconds (i.e., for RLFs of the largest subject
in terms of HTML elements, ElasticSearch) making the repair
approach practical to use. It reveals a positive relationship
between time and the number of HTML elements in the page
(Spearman’s correlation coefficient, ρ, is 0.81). Our timing
analysis did not reveal a practically significant difference
between the bordering layout used (i.e., narrower or wider) nor
between RLF type, nor a strong correlation with the number
of CSS properties. This is an intuitive result, since our method
involves copying layouts pertaining to all the page’s HTML
elements, for which not all CSS properties defined by the page
may be in active use for the particular viewport width used.

Conclusion for RQ3. Repairs by LAYOUT DR took no
longer than 40 seconds for the subject webpages studied,
which is a very practical amount of time for developers to
apply the tool in practice. The time taken is related to a
page’s complexity in terms of its number of HTML elements.

Threats to Validity. One threat to the validity of this paper’s
results is the extent to which they generalize to other web-
pages. We mitigated this by selecting webpages of a range of
sizes. Table I shows that our subjects ranged in complexity
from 42–1,243 HTML elements, and having between 658–
21,467 CSS rules. The functionality and design of these
webpages also varies, including online language learning (i.e.,
Duolingo) to browser automation tools (i.e., Selenium). An-
other potential threat to validity is the RLFs used as part of our
study. These were found by re-implementing the algorithms of
the REDECHECK tool, and were manually checked to remove
false positives. This intrinsically manual, yet necessary, pro-
cess was a straightforward one in which we discarded any
reports of RLFs that were not visible or did not significantly
impact the page — and were therefore unsuitable for our
study. Finally, we attempted to avoid any potential subjectivity
associated with confirming LAYOUT DR’s repair(s) for each
RLF by having the first author verify them with a thorough
visual inspection and asking humans to judge the repairs.

There are also threats to the validity of the results from the
human study. We only asked the participants to pick between
the orginal, defective webpage and the repairs generated by
LAYOUT DR, aiming to confirm that the hotfixes do not
degrade a page’s layout. We did not compare LAYOUT DR’s
repairs to alternatives created by tools like XFIX or IFIX
because they do not automatically repair responsive layouts.

Another human study threat is the selection of participants.
We used Amazon Mechanical Turk [1] to recruit anonymous
participants from a relatively large pool. To ensure authentic
results, we discarded any questionnaire responses if the par-
ticipant had not clicked on each webpage image in order to
assess the layout of each of the particular options provided.
Another threat involves the devices on which participants
viewed the study’s webpages. To ensure that participants used
a device with a display that correctly rendered each responsive
page at the required viewport width in a frame of the overall
questionnaire page, the system showed an error message if the
participants’s resolution was below 1400×768 and prevented

10

20

30

0 250 500 750 1000 1250

Number of HTML elements

T
im

e
 t
o

 r
e

p
a

ir
 (

se
c
o

n
d

s)

Fig. 5. Number of HTML elements in a webpage compared to its repair time.
In this plot the blue goodness-of-fit line has an R2 value of 0.62.

them from proceeding onto the questions. To mitigate threats
regarding differences in participants’ web browsers, we dis-
played the original webpages and their repairs as static, yet
scrollable, images. Even though this meant that people could
not interact with the webpages, this was not necessary as the
study’s goal was for participants to evaluate page layout.

Finally, there are validity threats in the implementation of
the LAYOUT DR tool itself, which may contain defects. We
mitigated this by ensuring that we wrote unit tests during its
development, and manually checking all results. To support the
replication of our results and the availability of our tool set,
we have made our scripts, tool, and other artefacts associated
with this paper’s study available in a replication package [7].

VI. RELATED WORK

Detecting different types of presentation failures in web
applications is a topic that has been extensively explored in
the literature, including cross browser issues (XBIs) [15], [14],
[25], a type of presentation failure that occurs when a web
page is rendered with one particular browser, but is free of
failures with at least one other browser; and international-
ization presentation failures (IPFs) [11] — layout issues that
arise from the translation of a web page due to differences
in the space occupied by translated text compared to text in
the page’s original language. There have also been methods
for detecting generalized presentation failures by comparing
images of intended layout (e.g., mockups provided by a
graphic designer) with actual layout in a web application [18],
[23] and through the use of verification methods that require,
for example, a developer to provide a layout specification [16].

For responsively designed web pages, Walsh et al. presented
two versions of the REDECHECK tool, one that works to
identify regressions between two consecutive versions of a
webpage [30], [31] and one that checks for layout failures
according to the implicit oracles reviewed in Section II.
Furthermore, Ryou et al. [26] proposed VFDETECTOR, which
also finds responsive layout failures, including those triggered
by human interaction due to the incorporation of dynamic
elements on the page coded with CSS and/or JavaScript.

While there has been much work on detecting presentation
failures, there has been comparatively less work on automated
approaches to repairing them. Mahajan et al. proposed a suite
of tools for fixing different types of presentation failures.
XFIX [20] implements a search-based approach for automati-
cally repairing XBIs. IFIX [21], [22] also used a search-based
technique for repairing IPFs. Meanwhile, Alameer et al. [10]

took a constraint solving approach to the same problem.
Finally, MFIX [19] patches webpages so that they passed
“Mobile Friendly” tests (e.g., those implemented in tools by
Google [5] and Microsoft [2]) designed to rate web pages
based on their suitability for rendering in a mobile browser
(e.g., font sizing and “tap target” spacing). Jacquet et al. [17]
also presented an approach that uses linear programming to
repair layout failures such as element protrusions, overlaps,
and misalignment. Their technique requires a web developer
to furnish a constraint specification of the desired layout of the
page. Moreover, it only appears to work with a webpage’s lay-
out at a fixed viewport width and, in contrast to LAYOUT DR,
is therefore unsuitable for repairing responsive webpages.

All of the repair techniques discussed in this section tackle
specific types of presentation failures. None of them, however,
tackle RLFs as does this paper. Another key difference be-
tween the technique presented in this paper and others is where
the “oracle” information comes from that guides or drives the
repair. For XFIX, it is the “correct” webpage rendering in the
reference browser. For IFIX, it is the original, untranslated,
webpage rendering. For MFIX, it is the information supplied
by mobile-friendliness test tools; while for the approach of
Jacquet et al. [17], it is the constraint specification describing
the correct layout of the page. For LAYOUT DR, presented in
this paper, the repair originates from renderings of the same
page at viewport widths either side of the range of an RLF.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a technique, implemented in a tool
called LAYOUT DR, that repairs layout failures in responsive
webpages. The tool “hotfixes” the page, meaning that, al-
though the repair is not necessarily a suitable long-term repair,
it addresses the symptoms of the original failure so that it
cannot be “seen” by users of the page. The presented approach
automatically generates a worthwhile fix, buying a developer
time to diagnose and address issues appearing on live sites,
which is a time-consuming and challenging process that may
involve changes to many HTML elements and CSS properties
or even necessitate a partial re-design of the responsive page.

Since the human study revealed that 92% of the participants
preferred the repaired version of a webpage compared to the
original one containing the RLF, we plan to improve LAY-
OUT DR as part of future work. For instance, we will provide
further automatic support to the developer in identifying and
fixing the particular components involved in the RLF. We also
plan to further extend the presented approach by strengthening
its RLF detection capability through the incorporation of
ideas from tools such as VERVE [12], [13], thereby providing
support for identifying RLFs that are not yet visually evident
in a page. Future work will also provide support for repairing
overlapping RLFs, in which both bordering layouts for a
particular RLF involve some other, further RLF, detected for
the page. Ultimately, the combination of these innovations with
the efficient and effective baseline established by the current
version of LAYOUT DR will result in a complete solution to
automatically repairing responsive layout faults in webpages.

REFERENCES

[1] Amazon Mechanical Turk. Online: https://www.mturk.com/.
[2] Bing Mobile Friendliness Test Tool. Online: https://www.bing.com/w

ebmaster/tools/mobile-friendliness.
[3] Bootstrap. Online: https://getbootstrap.com.
[4] Bulma CSS Framework. Online: https://bulma.io.
[5] Google Mobile Friendliness Test Tool. Online: search.google.com/test

/mobile-friendly.
[6] ReDeCheck tool and ISSTA results archive. Online: http://redecheck.or

g/issta17.
[7] Replication package for this paper. Online:

https://bitbucket.org/responsiverepair/replicationpackage.
[8] TailwindCSS. Online: https://tailwindcss.com.
[9] Windi CSS. Online: https://windicss.org/.

[10] Abdulmajeed Alameer, Paul T Chiou, and William GJ Halfond. Ef-
ficiently repairing internationalization presentation failures by solving
layout constraints. In International Conference on Software Testing,
Verification and Validation (ICST 2019), pages 172–182, 2019.

[11] Abdulmajeed Alameer, Sonal Mahajan, and William GJ Halfond. De-
tecting and localizing internationalization presentation failures in web
applications. In International Conference on Software Testing, Verifica-
tion and Validation (ICST 2016), pages 202–212, 2016.

[12] Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. Auto-
matic visual verification of layout failures in responsively designed web
pages. In International Conference on Software Testing, Verification and
Validation (ICST 2019), pages 183–193, 2019.

[13] Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. Au-
tomated visual classification of DOM-based presentation failure reports
for responsive web pages. Software Testing, Verification and Reliability,
31(4), 2021.

[14] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. Cross-
Check: Combining crawling and differencing to better detect cross-
browser incompatibilities in web applications. In International Con-
ference on Software Testing, Verification and Validation (ICST 2012),
pages 171–180, 2012.

[15] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. WebD-
iff: Automated identification of cross-browser issues in web applications.
In International Conference on Software Maintenance (ICSM 2010),
pages 1–10, 2010.

[16] Sylvain Hallé, Nicolas Bergeron, Francis Guérin, Gabriel Le Breton, and
Oussama Beroual. Declarative layout constraints for testing web appli-
cations. Journal of Logical and Algebraic Methods in Programming, 8,
2016.

[17] Stéphane Jacquet, Xavier Chamberland-Thibeault, and Sylvain Hallé.
Automated repair of layout bugs in web pages with linear programming.
In International Conference on Web Engineering (ICWE 2021), pages
423–439, 2021.

[18] S. Mahajan, B. Li, P. Behnamghader, and W. G. J. Halfond. Using visual
symptoms for debugging presentation failures in web applications. In In-
ternational Conference on Software Testing, Verification and Validation
(ICST), pages 191–201, 2016.

[19] Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G.J.
Halfond. Automated repair of mobile friendly problems in web pages. In
International Conference on Software Engineering (ICSE 2018), pages
140–150. ACM, 2018.

[20] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J.
Halfond. Automated repair of layout cross browser issues using search-
based techniques. In International Conference on Software Testing and
Analysis (ISSTA 2017), pages 249–260, 2017.

[21] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J.
Halfond. Automated repair of internationalization failures using style
similarity clustering and search-based techniques. In International Con-
ference on Software Testing, Validation and Verification (ICST 2018).
IEEE, 2018.

[22] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J.
Halfond. Effective automated repair of internationalization presentation
failures in web applications using style similarity clustering and search-
based techniques. Software Testing, Verification and Reliability, 31(1–2),
2021.

[23] Sonal Mahajan and William G. J. Halfond. WebSee: A tool for
debugging HTML presentation failures. In International Conference on
Software Testing, Verification and Validation Tools Track (ICSE 2015),
pages 1–8, 2015.

[24] Ethan Marcotte. Responsive Web Design. A Book Apart, 2014.
[25] Ali Mesbah and Mukul R Prasad. Automated cross-browser compatibil-

ity testing. In International Conference on Software Engineering (ICSE
2011), pages 561–570, 2011.

[26] Yeonhee Ryou and Sukyoung Ryu. Automatic detection of visibility
faults by layout changes in HTML5 web pages. In International Con-
ference on Software Testing, Validation and Verification (ICST 2018),
pages 182–192, 2018.

[27] Thomas A. Walsh. Automatic Identification of Presentation Failures in
Responsive Web Pages. PhD thesis, University of Sheffield, 2018.

[28] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Au-
tomated layout failure detection for responsive web pages without an
explicit oracle. In International Conference on Software Testing and
Analysis (ISSTA 2017), pages 192–202, 2017.

[29] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Re-
DeCheck: An automatic layout failure checking tool for responsively
designed web pages. In International Conference on Software Testing
and Analysis (ISSTA 2017), pages 360–363, 2017.

[30] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Au-
tomatically identifying potential regressions in the layout of responsive
web pages. Software Testing, Verification and Reliability, 30(6), 2020.

[31] Thomas A. Walsh, Phil McMinn, and Gregory M. Kapfhammer. Auto-
matic detection of potential layout faults following changes to respon-
sive web pages. In International Conference on Automated Software
Engineering (ASE 2015), pages 709–714, 2015.

[32] Westley Weimer. Advances in automated program repair and a call to
arms. In Proceedings of the International Symposium on Search Based
Software Engineering (SSBSE 2013), 2013.

