
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 0000; 00:1–43
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Automated Visual Classification of DOM-based Presentation
Failure Reports for Responsive Web Pages

Ibrahim Althomali1, Gregory M. Kapfhammer2, and Phil McMinn1*

1University of Sheffield 2Allegheny College

SUMMARY

Since it is common for the users of a web page to access it through a wide variety of devices — including
desktops, laptops, tablets, and phones — web developers rely on responsive web design (RWD) principles
and frameworks to create sites that are useful on all devices. A correctly implemented responsive web page
adjusts its layout according to the viewport width of the device in use, thereby ensuring its design suitably
features the content. Since the use of complex RWD frameworks often leads to web pages with hard-to-
detect responsive layout failures (RLFs), developers employ testing tools that generate reports of potential
RLFs. Since testing tools for responsive web pages, like REDECHECK, analyze a web page representation
called the document object model (DOM), they may inadvertently flag concerns that are not human visible,
thereby requiring developers to manually confirm and classify each potential RLF as a true positive (TP),
false positive (FP), or non-observable issue (NOI) — a process that is time consuming and error prone. The
conference version of this paper presented VISER, a tool that automatically classified three types of RLFs
reported by REDECHECK. Since VISER was not designed to automatically confirm and classify two types
of RLFs that REDECHECK’s DOM-based analysis could surface, this paper introduces VERVE, a tool that
automatically classifies all RLF types reported by REDECHECK. Along with manipulating the opacity of
HTML elements in a web page, as does VISER, the VERVE tool also uses histogram-based image comparison
to classify RLFs in web pages. Incorporating both the 25 web pages used in prior experiments and 20 new
pages not previously considered, this paper’s empirical study reveals that VERVE’s classification of all five
types of RLFs frequently agrees with classifications produced manually by humans. The experiments also
reveal that VERVE took on average about 4 seconds to classify any of the RLFs among the 469 reported by
REDECHECK. Since this paper demonstrates that classifying an RLF as a TP, FP, or NOI with VERVE, a
publicly available tool, is less subjective and error-prone than the same manual process done by a human
web developer, we argue that it is well-suited for supporting the testing of complex responsive web pages.

Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Responsive Web Design, Responsive Layout Failures, Web Presentation Failures,
Automated Web Testing, Automated Layout Failure Classification, Empirical Studies

1. INTRODUCTION

Since there is a significant number and variety of web-enabled devices, including phones, tablets,
laptops, and desktops, web developers no longer maintain a single “mobile version” of a web
page alongside a standard desktop version [1], instead opting to fully accommodate all of these
devices. Responsive web design (RWD) principles and frameworks allow developers to build web
pages that provide an equivalent user experience across varied devices [2]. When a web developer

∗Correspondence to: Department of Computer Science, The University of Sheffield, 211 Portobello, Sheffield, S1 4DP

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2

correctly uses an RWD framework, like Bootstrap [3] or Foundation [4], they can create a web
page that dynamically adapts its layout by “responding” to the viewport width of the browser
running on a device. Rather than requiring users to pan around or zoom in on the content, a web
page with a proper responsive design only requires a user to vertically scroll [5], an action that a
human can easily complete by, for instance, flicking their finger on a mobile screen or track pad.

Even though RWD principles and frameworks help to address the challenges of dealing with
different viewport widths, they can introduce new types of presentational layout failures — referred
to as “responsive layout failures” (RLFs) [6] — that can prevent the display of a web page’s content.
As the viewport width changes, web page elements can start to overlap one another, protrude
from their containing elements, disappear off the edge of the viewable portion of the page, wrap
incorrectly, or appear with incorrect layout at a few viewport widths. At best, these RLFs make for a
poor presentation of the page, leading to lost credibility [7] and decreased user loyalty [8]; at worst
they can lead to critical parts of the web application being inaccessible or unusable [9].

In addition to the “Responsive Design Mode” in the Firefox browser and “Device Mode” in the
Chrome browser, other tools exist to help developers check their responsive designs. For instance,
viewport resizers (e.g., [10–12]) automatically resize browsers to common viewport widths used by
web-enabled devices, conveniently allowing developers to see how their content is rendered. Yet, all
of these tools require a human to examine simulated page renderings to manually identify problems,
suggesting the need for a tool that can automate this challenging and time-consuming process.

The REDECHECK tool [13] helps a web developer to identify five representative types of RLFs
like, for instance, the situation when web page elements that are separated at one viewport width
later appear to collide with one another at a narrower viewport [6]. However, because REDECHECK
analyzes the document object model (DOM) representation of a web page [14], the potential RLFs
that it detects may not, in practice, be observable to humans. Since other responsive web testing
tools, like VFDETECTOR [15], also use the DOM, this concern is not restricted to the use of
REDECHECK, but rather a fundamental limitation of all DOM-based tools. For example, while the
bounding boxes of two elements may overlap on a page, their backgrounds may be transparent and
their respective content may thus appear as non-overlapping to a human viewer. The fact that web
developers still had to manually confirm and classify the failure reports created by REDECHECK
motivated us to create, as part of the conference version of this paper, the VISER tool [16].

The idea behind both the VISER tool and the follow-on tool introduced in this journal paper is to
automatically classify each RLF according to whether it is a true positive (TP), false positive (FP),
or a non-observable issue (NOI).† Without a tool to perform this classification, a web developer
must — in a process that may often be error prone and time consuming — manually classify
each RLF reported by REDECHECK. To save time and reduce subjectivity, our prior conference
paper introduced the VISER tool for automatically classifying an RLF into one of these three
categories by manipulating the opacity of the HTML elements referenced in REDECHECK’s report
of potential RLFs [16]. Since VISER cannot classify responsive layout failures pertaining to either
incorrect element wrapping or the appearance of visual disturbances at a small number of viewport
widths, this paper introduces “VERVE” (Visual classifiEr for ResponsiVe tEsting), a tool that
automatically classifies all five types of the potential RLFs detected by REDECHECK’s DOM-
based approach. Along with extending VISER’s opacity manipulation method to detect element
wrapping failures, VERVE employs a histogram-based image comparison method that classifies
the reported failure involving layout mistakes at a small number of viewport widths. This paper’s
description and evaluation of VERVE is an extension of a conference paper [16] that appeared at the
12th International Conference on Software Testing, Verification and Validation (ICST 2019). As a
review, the contributions of the original ICST 2019 conference paper were:

1. A technique, implemented in tool called VISER, that automates a previously manual approach
to confirming and classifying three of the five (i.e., element collision, element protrusion, and
viewport protrusion) responsive layout failures reported by the DOM-based REDECHECK.

†Although the conference version of this paper stated that VISER “verified” the responsive layout failures reported by
REDECHECK, this paper uses the verb “classify” to better describe the behavior of VISER and this paper’s tool, VERVE.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

3

2. Using 25 web pages, an empirical evaluation that compared the automated results produced
by VISER to those arising from a previously published manual analysis, finding that:

(a) VISER accurately classified the three types of potential responsive layout failures
identified by REDECHECK, automatically classifying all 117 from prior work.

(b) VISER can automate a time-consuming manual analysis and, importantly, eliminate its
subjectivity. Compared to humans, VISER categorized 28 failures differently, including
three that were, after a reconsideration, ultimately reclassified as false positives.

(c) VISER is fast to run, requiring no more than a few seconds to complete its automated
analysis for three of the types of responsive layout failures reported by REDECHECK.

While the empirical results from the conference version of this paper were positive — thereby
suggesting that further work was warranted — they were fundamentally limited by the fact that
VISER did not support the automated confirmation and classification of two types of RLFs reported
by REDECHECK. This journal version expands and deepens the technical details and empirical
evaluation of the approach presented in the ICST 2019 paper. The additional contributions that this
extended journal article makes over the original ICST 2019 conference paper are as follows:

1. Implemented in a tool called VERVE, that is publicly available in a GitHub repository
at github.com/verve-tool/verve, new algorithms for automatically classifying the
wrapping and small-range failures reported by REDECHECK. Notably, VERVE’s classifier for
the small-range failures uses histogram-based image comparison methods to determine when
a web page’s layout likely has a human observable problem. VERVE also has an enhanced
capability to classify viewport protrusion in cases where VISER could not effectively do so.
This means that VERVE can automatically confirm and classify all of the potential responsive
layout faults reported by REDECHECK, making it more generally useful than VISER.

2. Using the 25 web pages from the study in the aforementioned conference paper, an evaluation
of VERVE’s ability to automatically classify the element collision, element protrusion, and
viewport protrusion RLFs reported by REDECHECK, revealing an 86.3% agreement with
the previous manual classification. Since VERVE’s automated classification can take place
at different “inspection points”, this paper also empirically determines that the minimum
viewport width is the best one for ensuring VERVE’s agreement with the manual classification.

3. Again using the 25 web pages from the conference paper’s study, an experiment that evaluates
VERVE’s ability to classify the wrapping failures and small-range failures reported by
REDECHECK. The results reveal that, for wrapping failures, VERVE agrees with the manual
classification 78.6% of the time and, for small-range failures, the level of agreement is 98.5%.

4. To assess the generalizability of all the RLF classification techniques, as implemented in
VERVE, this paper also reports on experiments with 143 potential responsive layout failures
from 20 new subject web pages. For the element collision, element protrusion, and viewport
protrusion RLFs and these new subjects, VERVE’s classification agrees with the manual one
91.8% of the time time. While, with the new subjects, VERVE’s classification of wrapping
failures achieved a 64.7% agreement with the manual one, the results for the classification of
small-range failures show that VERVE matches the manual classification 73.6% of the time.

5. To assess the overall efficiency of VERVE for all 45 subjects and across a total of 469
presentation failures, we recorded the time taken to classify all of the RLF types reported
by REDECHECK, observing that the tool takes about 4 seconds to perform a classification.

The remainder of this paper is organized in the following fashion. First, Section 2 reviews
the principles and practices of responsive web design, highlighting the role that testing tools
like REDECHECK play in the development of high quality web pages. Section 3 then explains
how VERVE automatically classifies a responsive layout failure reported by REDECHECK as

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

4

being either a true positive, a false positive, or a non-observable issue. In particular, this section
shows how VERVE manipulates an HTML element’s opacity and uses histogram-based image
comparison to perform its classification. Section 4 introduces the methodology that we followed
to study the efficiency and effectiveness of VERVE, ultimately answering five research questions
and demonstrating the promise of the presented approach. Finally, Section 5 summarizes the
related work and Section 6 concludes the paper and suggests new ways to enhance VERVE, further
improving the manner in which the tool supports the creation of high quality responsive web pages.

2. BACKGROUND

The presentation layer of a web application consists of one or more web pages, which are rendered
by a web browser on the basis of several resources. A developer first creates a Hypertext Markup
Language (HTML) document that specifies the structure of the page’s content and involves HTML
elements like text, images, multimedia, forms, and scripts [14]. Developers associate Cascading
Style Sheets (CSS) with an HTML document to specify how a browser should graphically style
the HTML elements when rendering the page. Rules in the CSS can style the size and position
of elements and can control, for instance, whether the text within them should be rendered in
bold face or italic [17]. A browser parses the elements in an HTML document, along with the
CSS rules, to form the Document Object Model (DOM) of the page. The DOM is a tree-like data
structure that represents the page’s visual presentation [14]. A developer can query or modify the
page’s DOM (and consequently, its visual appearance) through the creation and use of scripts run
by the browser. An HTML element’s properties, such as its width or height, can be accessed by
specifying an eXtensible Markup Language (XML) path expression, known as its XPath [18]. The
final arrangement of HTML elements on a page, as rendered by the browser, is called its layout.

After overviewing the principles and practices of responsive web design, the remainder of this
section first explains how testing tools like REDECHECK automatically detect potential responsive
layout failures. Since REDECHECK works at the DOM level — and cannot ascertain whether the
potential layout failure is visually detectable by a human — this paper then highlights the challenges
associated with triaging non-observable issues, thereby setting the stage for VERVE, this paper’s tool
for automatically classifying a responsive layout failure as a TP, FP, or NOI.

2.1. Responsive Web Design (RWD)

The responsive web design (RWD) paradigm [2] incorporates the concepts of fluid grids, flexible
media, and media queries, each of which support the web page design strategies for accommodating
a range of viewport sizes. Often supported by frameworks such as Bootstrap [3] and Foundation [4],
these concepts are implemented using HTML and CSS. Fluid grids allow the web browser to arrange
a page’s HTML elements into layouts that smoothly adjust according to the width of the device’s
viewport. Flexible media refers to images or video content that stretch or shrink in size depending on
the screen space available to the browser. Finally, media queries allow developers to activate specific
CSS rules depending on the viewport width of the user’s device or the width of the web browser.
For example, any CSS rules contained within the media query @media(max-width:767px)
would be enabled if a user’s device had a narrow screen width of 767 pixels or less, while
@media(min-width:1200px) would trigger CSS rules when the page is viewed on the wide
screen of a desktop computer that horizontally displays 1200 pixels or more.

2.2. Testing to Detect Responsive Layout Failures (RLFs)

Even with the support of the RWD paradigm and its popular frameworks, web developers may
accidentally introduce a wide variety of presentation failures [19] — including responsive layout
failures (RLFs) [6] — such as the one shown in Figure 1. At a viewport width of 379 pixels (part (a)),
although no problems are apparent, the DOM-based coordinates of the container of the top right
profile image is protruding out of the main body element. At a narrower viewport width of 349

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

5

Viewport Size 379 px

(a) NOI Viewport Protrusion

Viewport Size 349 px

(b) TP Viewport Protrusion

Viewport Size 320 px

(c) TP Viewport Protrusion

Figure 1. Three snapshots of the SB-Admin-2 web page that capture a viewport protrusion failure at the
maximum of the reported failure range 320–379 pixels, in (a), and at the middle of the range in (b), and at

the minimum of the range in (c), as reported by REDECHECK and correctly classified by VERVE.

Viewport Size 1122 px

(a) No Layout Failure

Viewport Size 1121 px

(b) Wrapping Layout Failure

Figure 2. Two snapshots of the SB-Resume web page that capture its layout before a wrapping failure
occurs, in (a), and a wrapping failure with the range of 1056–1121 pixels in (b), as reported by the

REDECHECK and correctly classified, without human intervention, as a true positive by the VERVE.

pixels (part (b)), horizontal space is more constricted and the profile image is protruding off the
right-hand edge of the page. At a smaller viewport width of 320 pixels (part (c)), the profile image
is entirely missing from view and no longer accessible. Another example of an RLF is shown in
Figure 2. At a viewport width of 1122 pixels (part (a)), the bottom right 12 icons of programming
languages and tools are aligned in a row. While at the immediately narrower viewport of 1121 pixels
(part (b)) the last icon wraps into a new row and is therefore flagged by REDECHECK as an RLF.

One technique, implemented into the REDECHECK tool [6], automatically detects some of the
common RLFs in responsively designed web pages, including the following five types of failure.

Element Collision failures occur in a responsive design where the display space is sufficient to
accommodate two HTML elements (Figure 3(a)), yet as the viewport becomes narrower, space
between the elements tightens until they start to overlap one another (Figure 3(b)). Along with
causing unsightly presentational effects, this can lead to the restriction or loss of a web page’s
functionality if HTML elements, such as important links or buttons, are obscured.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6

Web Page

Wide Viewport

(a) Correct Layout

Web Page

Narrow Viewport

(b) Element Collision Failure

Web Page

(c) Correct Layout

Web Page

(d) Element Protrusion Failure

Web Page

(e) Correct Layout

Web Page

(f) Viewport Protrusion Failure

Web Page

(g) Correct Layout

Web Page

(h) Wrapping Failure

Figure 3. Wireframe examples of the Element Collision, Element Protrusion, Viewport Protrusion, and
Wrapping responsive layout failures. The left-hand column furnishes the correct layout, while the right-

hand column illustrates the layout failure that becomes evident as the viewport width narrows.

Element Protrusion failures occur when HTML elements “pop” out of their containers due to
reduced display space. At a wide viewport width (Figure 3(c)), the available display space allows
the browser to render the element correctly within its container. However, as horizontal display
space becomes smaller, the container starts to shrink. The containing element reaches its minimum
size, which, for instance, may be constrained by the text rendered within it. Eventually, the failure
is evident when the containing element protrudes out of its container (Figure 3(d)).

Viewport Protrusion is similar to element protrusion, except that an HTML element has protruded
out of the viewport itself — that is, it has extended out of the body HTML element of the page
(Figure 3(e)–(f)). Notably, Figure 1 shows real-world examples of Viewport Protrusion failures.

Wrapping failures occur when HTML elements that are part of a group that are supposed to
appear together on a single line (Figure 3(g)), cannot fit together side by side, because the viewport
is not wide enough to accommodate all of the elements. Wrapping failures are evident when one or
more of the elements “wrap” to form an additional line, separating them from the other elements
(Figure 3(h)). Figure 2 illustrates a real-world example of a wrapping failure.

Finally, Small-Range failures are layouts that anomalously occur for only a small number of
consecutive viewport widths. In contrast to the aforementioned RLFs, they do not necessarily occur
due to the amount of available space for laying out elements tightening from a wider to a narrower
viewport. Instead, they are often caused by mistakes in the CSS related to media queries. For
instance, the media queries “@media (max-width: 768px){...”, and a further media query
as “@media (min-width: 768px){...”. may be encoded by a developer. However, since the
viewport ranges defined by both of these expressions are inclusive, both will be activated at the
768 pixel viewport width, potentially leading to strange layout effects. This is because two sets of
rules will be activated when only one set was intended [20]. These types of failures are difficult for

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

7

Web Page

Wider Viewport

(a) Correct Layout

Web Page

Inbetween Viewport

(b) Small-Range Failure

Web Page

Narrower Viewport

(c) Correct Layout

Figure 4. A wireframe example of a Small-Range responsive layout failure.

developers to spot, as they occur only in small sub-range(s) of the entire range of viewport widths
in which the page may be viewed. Figure 4 gives an example of this: for the majority of viewport
widths (i.e., parts (a) and (c)), four web page elements are displayed as a 2 × 2 grid. Yet, for a small
number of viewports (i.e., part (b)), the bottom left element falls out of alignment with the others.

2.3. The REDECHECK Tool for Testing Responsive Web Pages

The REDECHECK (REsponsive DEsign CHECKer, pronounced “Ready Check”) tool, when run
in “common failure checking” mode, detects these RLFs by extracting a “Responsive Layout Graph”
(RLG) [13]. An RLG is a model of the responsive layout behavior of a web page [21]. It represents,
at different viewport widths, both the relative alignment of HTML elements with respect to one
another (e.g., “above”, “below”, and “contained”) and which HTML elements are, and are not, set to
be visible at each width. When constructing an RLG, REDECHECK collates information by driving
a desktop browser and rendering a web page at different viewport widths in a specified range. This
viewport range typically starts with a narrow width, 320 pixels, akin to a mobile phone, and extends
to a more spacious width of 1400 pixels, a viewport width corresponding to a web browser in use
on a desktop computer. REDECHECK extracts the DOM of the web page rendered at each viewport
width and uses it to find the relative alignment of HTML elements when constructing the RLG.

REDECHECK uses the RLG to find potential layout failures, such as those involving element
collisions, by checking for pairs of elements that were not overlapping at a particular viewport
width, but then overlap at a narrower width [6]. Intuitively, REDECHECK uses the layout at wider
viewports to cross-check narrower widths. If pairs of elements were not overlapping or protruding
at a particular viewport width but then do so as the viewport narrows, an RLF is likely to have
manifested. This type of checking across viewport widths makes REDECHECK less likely to report
false negatives than if a developer was to use, for example, the Fighting Layout Bugs tool [22],
which reports anomalies at a single viewport width. Tools of this nature report anomalies, such as
overlapping elements, at a single viewport width, where they are more likely to be layout behavior
that a web developer intended — and not something for which an alert is warranted.

When REDECHECK finds an RLF it produces a report that states (a) the failure type (e.g., element
collision or element protrusion); (b) the viewport range of the RLF (i.e., the minimum and maximum
viewport width for which the RLF was evident) and finally (c) the XPaths of the HTML elements
involved [13]. The HTML elements involved for protrusion failures are the protruding element
and its container; while for collision failures, REDECHECK reports the colliding elements. With
wrapping failures, REDECHECK reports the wrapped element along with the row elements with
which it was originally aligned. Finally, small-range failures are characterized by some temporary
and anomalous relative alignment of elements that suspiciously occurs at a few viewport widths.
Here, the REDECHECK tool reports the two elements for which relative alignment has changed. For
the example in Figure 4, the report would highlight the light gray and dark gray HTML elements.

The next subsection summarizes results from prior empirical studies of REDECHECK, pointing
out that, even though the automated tool improves the testing process, it may highlight certain
responsive layout issues that, in practice, web developers do not normally focus on first.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8

(a) No Collision (b) Non-Observable Collision (c) Observable Collision (d) Layered View of Collision

Figure 5. The wireframes of two HTML elements, shown in light and dark gray, with a white border that
is the same color as the background of the page (part (a)). Parts (b) and (c) respectively depict elements
with a non-observable collision and an observable collision. Finally, part (d) helps illustrate how VERVE
manipulates opacity to perform automatic visual classification of a responsive layout failure in a web page.

2.4. False Positives and “Non-Observable Issues” with DOM-Based Failure Reports

In a prior empirical study, REDECHECK found RLFs in 16 of 26 web pages studied [6]. However,
it produced 328 failure reports, of which only 197 were found to be true positives. This means that
the reports output by REDECHECK must be manually reviewed to see if the failure needs to be
fixed. Importantly, this manual review process is time consuming and error prone, suggesting the
need for an automated approach, like the VERVE tool presented in this paper, that can efficiently and
effectively determine if a potential RLF is a true positive, false positive, or non-observable issue.

A particular problem experienced during the use of REDECHECK is that, since its analysis is
based on the DOM of the web pages it checks — an abstract representation of a web page —
it cannot distinguish between issues that are observable in practice from those that are not. This
particular class of reports are referred to by Walsh et al. [6] as “non-observable issues”. Figure 5
highlights this problem, depicting two HTML elements in light and dark gray, with a white border
that is the same color as the background of the web page, as shown in part (a). Parts (b) and (c) reveal
non-observable and observable collisions, respectively. In part (b), the two elements are technically
colliding, but a person testing this web page is unlikely to see this as a problem because only the
borders of the elements are overlapping — and they are the same color as the background.

Figure 5(c) shows how an observable issue arises as a result of the dark gray element’s content
becoming obscured by that of the light gray one. As it does not take into account visual details
beyond the size and coordinates of the elements concerned, REDECHECK cannot distinguish
between the two scenarios in part (b) and (c) and so it reports them both. While the non-observable
issues exemplified by part (b) of Figure 5 may be of interest to testers — as they are latent issues
that could manifest in visible failures in different contexts — these RLFs are unlikely to be a high
priority compared to the actual visual defect in part (c) of this figure. Yet, REDECHECK offers no
way to distinguish non-observable issues from true positives, thereby limiting its effectiveness.

The aim of VERVE, introduced in the next section, is to solve this problem by performing
automated visual analysis of a web page with respect to failure reports, relieving a developer of
having to manually complete this task, thereby making the process less time consuming and error-
prone. These two web testing tools work together, with REDECHECK analyzing a web page’s DOM
to detect potential RLFs and VERVE classifying each RLF as a true positive, false positive, or non-
observable issue, thereby ensuring that a web developer can focus on the most critical failures.

3. AUTOMATED VISUAL ANALYSIS TO CLASSIFY DOM-BASED FAILURE REPORTS

Since the isolated use of DOM-based tools, like REDECHECK [13] and VFDETECTOR [15], may
report responsive layout failures that are either false positives or non-observable issues, this paper
presents VERVE as a companion tool that can address this limitation. Figure 6 shows VERVE’s
approach to automatic visual classification of REDECHECK’s failure reports, comparing it with
the series of manual steps that would otherwise be required. In comparison to the VISER tool

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

9

V
E

R
V

E

web page

R
E

D
E

C
H

E
C

K

===
RLFs Manual

Approach
Access

Web page
Set

Viewport
Scroll to
Failure

Classify
Failure

Automated
Approach

Web Page
Explorer DOM Filter

Image
Analyzer

===
Automatically

Classified

===
Manually
Classified

Figure 6. A high-level overview of the VERVE pipeline for the automatic visual classification of DOM-
based layout failure reports produced by REDECHECK. Along with the external input sources, this figure

also shows a manual approach to confirmation and classification that requires a human web developer.

presented in the conference version of this paper [16], VERVE is more general-purpose since it
can automatically classify all five types of potential RLFs that REDECHECK identifies.

After a developer runs REDECHECK on a web page, it reports the RLFs that it detects, if any.
Each report states the RLF type (e.g., element protrusion), the range of viewport widths for which
the RLF was deemed to occur (in the form of a lower and an upper bound), and the XPaths of
the HTML elements involved. If VERVE is not used, the developer must manually decide what to
do with these reports. As the figure also shows, this involves loading up the web page; setting the
viewport width of the browser to one within the reported range; manually identifying the elements
and scrolling to the failure if necessary; and finally deciding if the RLF is a true positive or not.

As depicted in Figure 6, the VERVE tool automates these steps. The Web Page Explorer opens the
browser, sets the viewport width and locates the faulty elements. It first crosschecks REDECHECK’s
result by examining the DOM in the DOM Filter step. VERVE checks that each element reported
has a physical size (i.e., its width and height are not zero), and they can be reached, if not initially
present, by scrolling the web page. Specifically, VERVE checks the co-ordinates of the bounding box
of each element. Negative co-ordinates are inherently unreachable by scrolling, while coordinates
greater than the maximum position that can be scrolled to are also deemed to be off the page. The
tool VERVE makes further checks at this stage specific to the different failure types discussed in the
following sections. Any RLFs failing these inspections are reported as false positives. Otherwise,
VERVE proceeds to the Image Analyzer component for visual analysis of the failure.

The Image Analyzer investigates specific regions of a web page, which we refer to as areas of
concern (AOCs). AOCs are specific to each type of RLF. An AOC bounds a rectangle of the page
pertaining to the elements involved in a layout failure where its graphical presence is suspected to
have inadvertently overwritten other graphics or content on the page, or to have been written to the
page out of position. The Image Analyzer then attempts to determine if this is the case (i.e., the RLF
produces visible, observable effects). For example, if the misplaced element has no content and is
transparent, the RLF will not be detectable by a human using the web page and so a failure report
produced by REDECHECK will likely be of little concern to the page’s developers.

The remainder of this section describes how VERVE identifies AOCs for different types of RLF,
and how the image analysis uses them to automatically classify the failure reports.

3.1. Element Collision, Element Protrusion, and Viewport Protrusion Failures

Element collision, element protrusion, and viewport protrusion failures all involve overlaps of
two HTML elements, and as such VERVE’s image analysis follows a similar algorithmic process for
classifying them. For protrusion failures, the DOM Filter component of VERVE makes the additional
check that the width and height of the protrusion are not zero (i.e., that the “protruding” element is
actually outside the bounds of its container).‡ If this is the case, VERVE reports a false positive, else

‡This can happen in practice due to discrepancies between the DOM extracted by REDECHECK and VERVE since
REDECHECK uses JavaScript injected into the page to extract the DOM, while VERVE uses Selenium. We report on
instances of this in our evaluation (Section 4.5), specifically in the answers to RQ1(a) and (b) given on pages 23 and 25.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10

Layout Scenario

A

Contained

B C

Overlapped

D

Detached
Element Collision A B -

Element Protrusion - B, C D
Viewport Protrusion - B, C D

Figure 7. Identifying “areas of concern” (AOCs) for the element collision, element collision, and viewport
protrusion RLFs and the three layout scenarios involving two distinct HTML elements, as depicted by the
light gray and dark gray boxes. This figure uses a capital letter for an AOC in a specific RLF and scenario.

it proceeds to the Image Analyzer phase. The DOM checks for collision failures verify that the DOM
coordinates of the reported elements do overlap. In the Image Analysis phase, VERVE identifies the
AOCs relevant to the failure, and tries to discern whether the failure is visible or not.

3.1.1. Identifying Areas of Concern (AOCs). Figure 7 summarizes the ways in which two HTML
elements can be arranged spatially with respect to one another. The two elements are depicted
by dark gray and light gray boxes, respectively. The figure identifies three particular scenarios:
“Contained”, where one element resides inside the bounds of another; “Overlapped”, where the
two elements share some, but not all, of the same display space; and finally “Detached”, where
the two elements are set completely apart from one another. The figure then shows how AOCs are
determined for each type of RLF with respect to each scenario. For element collision, the AOC is
the portion of the secondary (light gray) element that is contained within the first (A in the fully
contained scenario, or B in the overlapped scenario). For element protrusion, there are two potential
AOCs. The first is the overlapped portion (B), if it exists; and the second the non-overlapping portion
(C in the overlapped scenario, D in the detached scenario). The two portions are treated as separate
AOCs to simplify the image analysis, which needs to take into account the fact that the foreground
element is overlaid on different background elements. The same is true for viewport protrusion,
except for that, in this case, the dark gray background element corresponds to the body element of
the web page, which is the basic container for all web page elements.

3.1.2. Classification Algorithm. Once the method detailed in the last subsection has identified an
AOC, the image analysis tries to determine whether or not the HTML elements involved in the
RLF — which are often stacked on top of one another — render different content in the same
space or out of position. The approach works to “reveal” the different layers of the AOC by
removing the HTML elements concerned from the top level down to the background, systematically
removing each element involved in the failure. (As an example, Figure 5(d) showed the stacking of
elements involved in an element collision and the different “layers” that are involved.) VERVE takes
a snapshot image of the AOC at each layer, and then compares them for differences. If there are any,
then VERVE classifies the RLF as being visible (i.e., it is a true positive). If there are no differences,
then it should not be a priority for developers and so the tool classifies the RLF as non-observable.

VERVE accesses different graphical layers in the display space by manipulating the opacity
CSS property of HTML elements, thereby making it and its descendants invisible. We decided to
use opacity, as opposed to removing elements completely, because removing elements can impact
the layout of the remaining HTML elements on the page [17], which would potentially interfere
with the classification of the RLF. By instead manipulating the element’s opacity, the element is
still “there” as far as the layout is concerned, but the elements stacked below it are revealed for the
purposes of taking a snapshot. This method also has the advantage of being browser-independent.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

11

Algorithm 1 Classification of Element Collision and Element/Viewport Protrusion Failures

INPUT: Two HTML elements, back and front , and the failure type, ft .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure CLASSIFYCOLLISIONSANDPROTRUSIONFAILURES(back , front , ft)
2: scenario ← GETSCENARIO(back , front)
3: if scenario = contained then
4: AOC ← GETCONTAINEDAOC(back , front) . AOC = A (Figure 7)
5: return CONTAINEDAOCIMAGEANALYSIS(back , front , ft ,AOC)

6: if scenario = overlapped then
7: AOC ← GETCONTAINEDAOC(back , front) . AOC = B (Figure 7)
8: return CONTAINEDAOCIMAGEANALYSIS(back , front , ft ,AOC)

9: if scenario = detached then
10: AOC ← GETDETACHEDAOC(back , front) . AOC = D (Figure 7)
11: return DETACHEDAOCIMAGEANALYSIS(front ,AOC)

A technical inconvenience arises when the AOC is larger than the portion of the web page
currently viewable, due to the viewport size corresponding to the RLF, a situation that is common
with viewport protrusion failures. Since the page’s responsive design is likely to dictate that the
failure no longer occurs, the viewport size cannot be increased to bring these elements back into
view for snapshotting. In this scenario, VERVE scrolls the web page, taking snapshots of individual
portions of the page and then “sewing” the AOC together as necessary.

Nevertheless, it is not always possible to scroll and bring protruding elements into view. In these
circumstances, VERVE performs what we refer to as a “best-effort” approximation of the AOC by
changing the page and altering the CSS properties of the offending elements in an attempt to “pull”
it into the visible portion of the page so that a snapshot can be taken. The previous version of
this tool, VISER, was moderately successful at this through altering the margin-left property of
the offending element [16]. However, some off-screen elements stubbornly refused to move with
this method. We analyzed these situations and made the best-effort analysis in VERVE more robust
by (a) adjusting further CSS properties, such as margin-right, if margin-left failed; and (b)
labelling the modified property with the “!important” rule, so that VERVE’s change could not be
overridden later in the page’s stylesheet. This paper evaluates our improved best-effort analysis to
these viewport protrusion failure scenarios as part of the empirical evaluation in Section 4.

Algorithm 1 furnishes the top-level algorithm for classifying collisions and protrusions. This
is the image analysis component of the VERVE tool, as shown by Figure 6, for these particular
types of RLFs. This component of VERVE finds the initial AOC to analyze, identified according
to the principles illustrated in Figure 7. Further analysis is then performed by one or both of
Algorithms 2 and 3, depending on the layout scenario. If one element contains the other, as with the
contained scenario of Figure 7, or part of the other, as with the overlapped scenario, control passes
to Algorithm 2. Depending on the scenario, the AOC is either A or B, as shown by Figure 7.

Algorithm 2 takes the two HTML elements involved (i.e., the dark gray and light gray elements
of Figure 7) and sets their opacity to 0%, ensuring that they are transparent via a call to
MAKETRANSPARENT. This procedure modifies the opacity of the element dynamically using
JavaScript injected into the page — that is, without having to reload it each time a change is made.
Three snapshots are then taken, first of the background (where both elements are transparent), which
is saved in imgNoElements . Then, restoring back (i.e., the dark gray element) to its original opacity
level (using the RESTORE procedure) a further snapshot, imgBack , is taken. Finally, the foreground
element is restored and the algorithm takes another snapshot of the AOC and saves it to imgFront .
These three images are then compared in line 9 of the algorithm. If there are differences, and the
failure type is an element collision, then the RLF is deemed to be visible, and the algorithm returns
a true positive (TP), else the verdict is a non-observable issue (NOI). If there are differences for
the other two failure types (i.e., element protrusion and viewport protrusion), then the AOC, when
detached from the background element, must be analyzed to see if the content has spilled outside its
containing element. In this case, control passes to Algorithm 3 to handle the case of a detached area
of concern, as the AOC is now known to be C, as per Figure 7.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12

Algorithm 2 Image Analysis for Contained AOCs

INPUT: Two HTML elements, back and front , the failure type, ft , the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure CONTAINEDAOCIMAGEANALYSIS(back , front , ft ,AOC)
2: back ← MAKETRANSPARENT(back)
3: front ← MAKETRANSPARENT(front)
4: imgNoElements ← SNAPSHOT(AOC)
5: back ← RESTORE(back)
6: imgBack ← SNAPSHOT(AOC)
7: front ← RESTORE(front)
8: imgFront ← SNAPSHOT(AOC)
9: if imgNoElements 6= imgBack ∧ imgNoElements 6= imgFront then

10: if ft = element collision then
11: return TP
12: if ft = element protrusion ∨ ft = viewport protrusion then
13: AOC ← GETDETACHEDAOC(back , front) . AOC =C (Figure 7)
14: return DETACHEDAOCIMAGEANALYSIS(front ,AOC)

15: return NOI

Algorithm 3 Image Analysis for Detached AOCs

INPUT: An HTML element, element , and the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure DETACHEDAOCIMAGEANALYSIS(element ,AOC)
2: element ← MAKETRANSPARENT(element)
3: imgNoElement ← SNAPSHOT(AOC)
4: element ← RESTORE(element)
5: imgElement ← SNAPSHOT(AOC)
6: if imgNoElement 6= imgElement then
7: return TP
8: return NOI

Algorithm 4 Classification of Wrapping Failures

INPUT: The wrapped element wrapped .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure CLASSIFYWRAPPINGFAILURES(wrapped)
2: AOC ← GETWRAPPINGAOC(wrapped) . AOC = E (Figure 8)
3: return DETACHEDAOCIMAGEANALYSIS(wrapped ,AOC)

In the detached scenario, Algorithm 3 may also be invoked directly from Algorithm 1, with the
AOC being identified as D, as per Figure 7. The algorithm proceeds in a similar fashion to that of
Algorithm 2, except there are only two layers to consider: that with the foreground element (i.e.,
the light gray element of Figure 7) present and that where it is transparent. The two snapshots are
compared. If the images are different, then the algorithm returns a true positive (i.e., the RLF is
visible), else the non-difference between the layers means that the RLF is non-observable.

As stated in Section 2, REDECHECK reports, for each RLF, a viewport range that is the narrowest
to the widest viewport width for which the RLF is manifested at the DOM level. Since VERVE has
a choice of the viewport at which it can visually inspect the RLF, we made this a configurable
parameter of the tool. The default is to look at the narrowest viewport width (i.e., the “low end” of
the range) since RLFs are more likely to be noticeable at screen sizes with tighter layout constraints
than at wider viewports that are less constrained for space. Since this assumption about the viewport
inspection point may not generally hold, we investigate this parameter’s configuration in Section 4.

3.2. Wrapping Failures

For wrapping failures, the DOM Filter phase of VERVE involves an additional check of the DOM to
determine if the wrapped element has vertical coordinates indicating that it is below the right-most

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

13

E

Figure 8. The area of concern (the element marked “E”) for a wrapping failure.

element of the row from which REDECHECK deems it to have wrapped. If this is not the case, then
VERVE reports a false positive, else VERVE proceeds to the image analysis stage.

The Image Analyzer component of VERVE treats wrapping failures in the same way as
the “detached” case of Figure 7. The AOC is the area of the wrapped element as shown in
Figure 8. The algorithm for wrapping failures (Algorithm 4) takes this AOC and passes it to the
DETACHEDAOCIMAGEANALYSIS algorithm (Algorithm 3), which in turn will detect whether the
wrapped element is visible or not (returning TP or NOI, respectively). For this type of RLF, cases
where the wrapped element is non-visible correspond to those where the developer has inserted an
invisible “spacer” element intended to provide some vertical padding.

3.3. Small-Range Failures

As noted in Section 2, small-range failures are altogether different from the other failure types.
They are not caused as a result of tightening space, but rather mistakes in the CSS code related to
media queries (e.g., off-by-one mistakes resulting in a media query being activated for a viewport
width erroneously) or other emergent, intermittent effects resulting from interaction of element CSS
properties that conspire to make the layout look anomalous for particular viewport widths.

Because the visual effects that they cause are a result of general element misalignments whose
positions are difficult to characterize in advance, small-range failures require a different treatment
than that used for the previously discussed RLF types. VERVE therefore takes a different approach
in which it attempts to measure the level of visual disturbance. If the visual difference is above some
threshold for the small-range, compared to snapshots of the web page at viewport widths either side
of the small-range, VERVE flags the RLF as a true positive. If the visual difference is negligible (i.e.,
under experimentally determined thresholds), then VERVE flags the RLF as a false positive.

3.3.1. Identifying Areas of Concern for Small-Range Failures. As for other failure types, VERVE
identifies regions of the web page (i.e., the areas of concern) for small-range failures, subjecting
them to particular scrutiny. The difference with other failures is that VERVE not only identifies
AOCs on the basis of the viewport containing the failure, but also on the viewports (i.e., with
narrower and wider widths) at either side of the small range of viewports where the failure has
been identified to occur by REDECHECK. We refer to the viewports on either side of the failure
as “comparison” viewports, and any viewport in the small range where the failure is deemed to
occur as a “failure viewport”. VERVE contrasts AOCs from the comparison viewports with their
counterparts in a failure viewport and tries to automatically ascertain if there are visual differences.

The REDECHECK tool reports small-range failures as pairs of elements whose relative alignment
has changed for a small number of viewport widths (for example, in Figure 4(b), the light grey
element moves from the left of the dark grey element to its bottom-left). Figure 9 depicts the scenario
of Figure 4(b) with AOCs labelled. We present the small-range failure (part (a) of the figures,
denoted the failure viewport) alongside the narrower viewport (part (b), denoted the comparison
viewport) where the anomalous alignment is no longer evident. There are different ways in which
AOCs can be obtained to try and capture the region of the visual disturbance as a result of the failure.
The “horizontal referencing” approach, illustrated by Figure 9, forms AOCs using the coordinates
of the bounding boxes of each reported element at each viewport width, extended out horizontally
either right or left to the edge of the page (e.g., F and G). This gives two AOCs for each element, four
AOCs for each viewport, and a total of 12 AOCs for all three viewports. An alternative, illustrated
by Figure 10, is to form the AOC from the snapshot by extending out from the reported element
vertically to the top or bottom of the page (e.g., N and O). We implemented both the “horizontal
referencing” and a combined “horizontal-plus-vertical referencing” approach into the VERVE tool,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14

Web Page

F

Web Page

G

Web Page

H

Web Page

I

(a) Small-range viewport (referred to as a “failure” viewport)

Web Page

J

Web Page

K

Web Page

L

Web Page

M

(b) Immediately narrower viewport (referred to as a “comparison” viewport)

Figure 9. Using the horizontal referencing approach to identify the horizontal “areas of concern” (AOCs)
for a small-range responsive layout failure involving two distinct HTML elements, as represented by the

light gray and dark gray boxes.

Web Page

N

Web Page

O

Web Page

P

Web Page

Q

(a) Small-range viewport (referred to as a “failure” viewport)

Web Page

R

Web Page

S

Web Page

T

Web Page

U

(b) Immediately narrower viewport (referred to as a “comparison” viewport)

Figure 10. Using the vertical referencing approach to identify the vertical “areas of concern” (AOCs) for a
small-range responsive layout failure involving two distinct HTML elements, represented by the light gray

and dark gray boxes.

and evaluate them in Section 4. The classification algorithm, described next, compares respective
AOCs with one another using automated color histogram analysis.

3.3.2. Classification Algorithm for Small-Range Failures. The classification algorithm for small-
range AOCs compares pairs of color histograms for corresponding AOCs from a failure viewport
and a comparison viewport (e.g., F and J from Figure 9). Algorithm 5 shows the steps for the
combined “horizontal-plus-vertical referencing” approach for identifying AOCs. The algorithm with
“horizontal referencing” AOC identification is the same but omits the steps involving identifying and
using “vertical” AOCs (e.g., lines 7–11 and 17–21).

The first part of the algorithm involves determining the AOCs (lines 2–24) and matching them
up (lines 25–28) into sets across the three viewports involved. The comparison of these AOCs takes
place in a loop over each set (lines 29–38). The algorithm obtains the image of each AOC, in the
matched set — taken from a snapshot of the page at the appropriate viewport — and computes its
color histogram, a histogram of the number of pixels with a certain color in the image (lines 31
and 33). The algorithm then uses a histogram metric to compute a “distance” between the color
histogram of the image from the failure viewport against that of a narrower or wider comparison
viewport (lines 34 and 35, respectively). The algorithm then chooses the smaller of the calculated

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

15

Algorithm 5 Classification of Small-Range Failures

INPUT: Two HTML elements, element1 and element2 involved in the failure; the failure viewport failureVP ; the
narrower comparison viewport narrVP ; the wider comparison viewport widerVP ; and finally, the color histogram
distance metric metric.
OUTPUT: TP if the RLF is deemed observable, FP otherwise.

1: procedure CLASSIFYSMALLRANGEFAILURES(element1 , element2 , failureVP ,narrVP ,widerVP ,metric)
2: � Get horizontal AOCs from failure viewport
3: element1RightFailureAOC ← GETRIGHTAOC(element1 , failureVP) . AOC = F (Figure 9)
4: element1LeftFailureAOC ← GETLEFTAOC(element1 , failureVP) . AOC = G (Figure 9)
5: element2RightFailureAOC ← GETRIGHTAOC(element2 , failureVP) . AOC = H (Figure 9)
6: element2LeftFailureAOC ← GETLEFTAOC(element2 , failureVP) . AOC = I (Figure 9)
7: � Get vertical AOCs from failure viewport
8: element1TopFailureAOC ← GETTOPAOC(element1 , failureVP) . AOC = N (Figure 10)
9: element1BottomFailureAOC ← GETBOTTOMAOC(element1 , failureVP) . AOC = O (Figure 10)

10: element2TopFailureAOC ← GETTOPAOC(element2 , failureVP) . AOC = P (Figure 10)
11: element2BottomFailureAOC ← GETBOTTOMAOC(element2 , failureVP) . AOC = Q (Figure 10)
12: � Get horizontal AOCs from narrower (comparison) viewport
13: element1RightNarrAOC ← GETRIGHTAOC(element1 ,narrVP) . AOC = J (Figure 9)
14: element1LeftNarrAOC ← GETLEFTAOC(element1 ,narrVP) . AOC = K (Figure 9)
15: element2RightNarrAOC ← GETRIGHTAOC(element2 ,narrVP) . AOC = L (Figure 9)
16: element2LeftNarrAOC ← GETLEFTAOC(element2 ,narrVP) . AOC = M (Figure 9)
17: � Get vertical AOCs from narrower (comparison) viewport
18: element1TopNarrAOC ← GETTOPAOC(element1 ,narrVP) . AOC = R (Figure 10)
19: element1BottomNarrAOC ← GETBOTTOMAOC(element1 ,narrVP) . AOC = S (Figure 10)
20: element2TopNarrAOC ← GETTOPAOC(element2 ,narrVP) . AOC = T (Figure 10)
21: element2BottomNarrAOC ← GETBOTTOMAOC(element2 ,narrVP) . AOC = U (Figure 10)
22: � Get vertical and horizontal AOCs from wider (comparison) viewport
23: element1RightWiderAOC ← GETRIGHTAOC(element1 ,widerVP)
24: . . .
25: � Match up the AOCs for color histogram analysis
26: setsOfAOCs ← {(element1LeftFailureAOC , element1LeftNarrAOC , element1LeftWiderAOC),
27: (element1RightFailureAOC , element1RightNarrAOC , element1RightWiderAOC),
28: . . .}
29: � Compare the color histograms for each set of AOCs
30: for each (failureAOC ,narrAOC ,widerAOC) ∈ setsOfAOCs do
31: histogramForFailureAOC ← GETCOLORHISTOGRAM(SNAPSHOT(failureAOC, failureV P))
32: histogramForNarrAOC ← GETCOLORHISTOGRAM(SNAPSHOT(narrAOC, narrV P))
33: histogramForWiderAOC ← GETCOLORHISTOGRAM(SNAPSHOT(widerAOC,widerV P))
34: distanceNarrower ← GETDISTANCE(metric, histogramForFailureAOC, histogramForNarrAOC)
35: distanceWider ← GETDISTANCE(metric, histogramForFailureAOC, histogramForWiderAOC)
36: distance ← MIN(distanceNarrower, distanceWider)
37: if SATISFYTHRESHOLD(metric, distance) then
38: return TP
39: return FP

narrower and wider comparison distances (line 36), the intuition being that the viewport with the
smaller distance more likely better distinguishes the difference between the failure occurring or
not (i.e., ignoring potential “noise” caused by unrelated but intended layout changes programmed
as part of a breakpoint in the CSS). If this distance is above a threshold (as determined by the
SATISFYTHRESHOLD function on line 37 of the algorithm), VERVE deems there to be sufficient
“disturbance” to the presentation of the web page to report the failure as a true positive (line 38),
else VERVE classifies it as a false positive (line 39).

For computing the color histograms and each distance metric, VERVE uses the publicly available
implementations in OpenCV [23]. Since different distance metrics are possible, we employed each
of the six that are currently provided by OpenCV: Bhattacharyya Distance, Chi-Square, Alternative
Chi-Square, Correlation, Intersection, and Kullback-Leibler Divergence [24]. We determined the
thresholds experimentally (see Section 4 for more details) and evaluated the suitability of each of
these options for the subjects in this paper’s empirical study, which we introduce and discuss next.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16

4. EMPIRICAL EVALUATION

To empirically investigate the effectiveness and efficiency of VERVE, we employed it to classify
the RLFs found in the web pages used in the previous evaluation of REDECHECK [6], while also
evaluating it on a new set of subjects not used in prior work to study either REDECHECK or VISER.
This section give details of the research questions of the study in Section 4.2. First, however, it gives
more details on the two sets of subjects that we used to conduct the experiments.

4.1. Subject Web Pages

We used two sets of web page subjects to evaluate VERVE. The first set, which we refer to
throughout the paper as the initial set of subjects, is the same set of web pages used to evaluate
REDECHECK’s effectiveness by Walsh et al. [6] and was used to evaluate our technique in the
conference version of this paper [16]. For this extended paper, we further evaluated VERVE on 20
new subjects, which we refer to as the additional set of pages and describe in more detail next.

The initial set of subjects, made available by Walsh et al. [6], are listed in Table I(a), and comprises
25 web pages. We took these subjects, without modification, directly from the repository cited
in Walsh et al.’s paper (github.com/redecheck/example-webpages). However, while the
original set of web pages studied by Walsh et al. involved 26 subjects, we found that the tool
previously used to download one subject’s resources (StumbleUpon) had not worked correctly, and
we were unable to reproduce it. Since this web page was no longer available in its original form and
we could not reconstruct the subject’s archive, we had to exclude it from this paper’s experiments.
This gave us, as part of the initial set, a total of 326 RLFs reported by REDECHECK for use in
the evaluation of VERVE. We used the manual classifications made by Walsh et al. [6], which are
publicly available at redecheck.org/issta17.

The 25 web pages were previously selected in a random fashion by Walsh et al. through the use
of the randomusefulwebsites.com service that was recently re-branded as discuvver.com.
Although all of these web pages are responsive, they represent a wide variety of application domains
and page layouts. For instance, while Airbnb, ConsumerReports, and Duolingo are the web pages
of major organizations, others such as BugMeNot, PepFeed, and RainyMood are pages created by
individuals or small organizations. It is also worth noting that these web pages feature different
layouts that vary according to, for instance, the number of rows and columns, with pages such as
ZeroDollarMovies having images in a tight, grid-based layout and others such as TopDocumentary
mixing both text and images on a simple grid. In summary, these web pages come from a wide
variety of application domains, ensuring the representativeness of this paper’s empirical results.

We further evaluated VERVE with 20 new subject web pages, as shown in Table I(b), referred to as
the additional set of subjects. These web pages did not previously feature in either the REDECHECK
study [6] or the original study presented in the conference version of this paper [16]. These
additional subjects are a collection of seven real web pages and 13 “theme” web pages. Although
the Bootstrap-based web pages are themes that are not meant to be hosted as is, they demonstrate
features for multiple types of web pages. For instance, among these 13 themes are full-featured
starter templates for web dashboards, advertising agencies, and art portfolios. Furthermore, they are
maintained in popular GitHub repositories publicly hosted in the “Blackrock Digital” organization
at github.com/blackrockdigital. These regularly updated themes are frequently forked and
starred, suggesting that the responsive web development community sees them as useful templates
for starting high-quality web sites. The popularity of these themes can be illustrated by noting that,
for instance, the SB-Admin-2 subject was created by 14 contributors who made 19 releases to a
project that has currently over 4,400 forks and 7,300 stars. We collected these “theme” subjects by
searching for responsive demonstration web pages that were available in public GitHub repositories.
Collectively, the additional 20 web pages have a total of 143 RLFs reported by REDECHECK.

In summary, the subject collection process gives us an overall total of 45 web pages with 469
RLFs to be automatically classified by VERVE as part of our empirical evaluation.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

17

Table I. Experimental subject web pages.

(a) The initial set of web pages.

Web Site Name URL Number of HTML Elements Number of CSS Declarations

3-Minute-Journal 3minutejournal.com 80 5408
AccountKiller accountkiller.com/en 344 4685
AirBnb airbnb.com 1470 9964
BugMeNot bugmenot.com 42 654
CloudConvert cloudconvert.com 908 6494
Consumer-Reports consumerreports.org 1079 8330
Covered-Calendar coveredcalendar.com 148 8324
Days-Old daysold.com 66 2800
Dictation dictation.io 195 8290
Duolingo duolingo.com 856 4150
Honey joinjoney.com/install 461 7999
HotelWifiTest hotelwifitest.com 359 6833
Mailinator mailinator.com 280 8729
MidwayMeetup midwaymeetup.com 86 4072
Ninite ninite.com 642 4091
Pdf-Escape pdfescape.com 180 2041
Pepfeed pepfeed.com 343 7341
Pocket getpocket.com 664 6416
RainyMood rainymood.com 89 112
RunPee runpee.com 438 14788
TopDocumentary topdocumentaryfilms.com 411 1521
UserSearch usersearch.org 866 3590
WhatShouldIReadNext whatshouldireadnext.com/search 112 2224
WillMyPhoneWork willmyphonework.net 782 6572
ZeroDollarMovies zerodollarmovies.com 247 11228

Total 11148 146656

(b) The additional set of web pages.

Web Site Name URL Number of HTML Elements Number of CSS Declarations

EatThisMuch eatthismuch.com 807 12318
Forvo forvo.com 584 19722
GMapStreetViewPlayer brianfolts.com/driver 268 5617
RetailMeNot retailmenot.com 1336 2823
HoursOf hoursof.com 1258 9513
SB-Admin-2 startbootstrap.com/themes/sb-admin-2 360 6656
SB-Agency startbootstrap.com/previews/agency 420 6303
SB-Business-Casual startbootstrap.com/previews/business-casual 56 4438
SB-Clean-Blog startbootstrap.com/previews/clean-blog 93 6160
SB-Coming-Soon startbootstrap.com/previews/coming-soon 43 5969
SB-Creative startbootstrap.com/previews/creative 135 6318
SB-Freelancer startbootstrap.com/previews/freelancer 284 6064
SB-Grayscale startbootstrap.com/previews/grayscale 116 6120
SB-Landing-Page startbootstrap.com/previews/landing-page 130 6146
SB-New-Age startbootstrap.com/previews/new-age 127 6649
SB-One-Page-Wonder startbootstrap.com/previews/one-page-wonder 68 4424
SB-Resume startbootstrap.com/previews/resume 176 5924
SB-Stylish-Portfolio startbootstrap.com/previews/stylish-portfolio 143 6363
SimilarSites similarsites.com 478 10268
Tiiime tiii.me 80 847

Total 6962 138642

4.2. Research Questions

The experiments focus on answering the following five research questions. RQs1–3 evaluate VERVE
with the initial set of subjects due to Walsh et al. [6], previously used to evaluate REDECHECK
and VISER. RQ4 exclusively evaluates VERVE with the new, additional set of subjects, while RQ5
concludes the research questions and features both sets of subjects.

RQ1: Element Collision, Element Protrusion, and Viewport Protrusion Failures.
(a) Can VERVE automatically classify failure reports for these types of failures and how does it
compare to manual classification? For this research question, we compare VERVE’s automated
classification to the manual classification, using the tool’s default setting of performing the image
analysis at the narrowest viewport width reported for each RLF.
(b) Within the viewport range of these types of failure, what is the point of inspection that has the best
chance of revealing a true positive? For this research question, we determine if it is best to perform
the image analysis at the narrowest viewport width for an RLF. We compare VERVE’s classification
to the results of the manual classification process for three points in the RLF’s viewport range: the
minimum, or narrowest (as investigated in RQ1a), the middle of the range, and the maximum width.

RQ2: Wrapping Failures. Can VERVE automatically classify wrapping failure reports and how
does it compare to manual classification? To answer this research question, we compare VERVE’s
classification results to the manual classification for wrapping failures.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18

RQ3: Small-Range Failures. Can VERVE automatically classify small-range failure reports, how
does it compare to manual classification, and which color histogram distance metric works the best?
For this research question, we compare VERVE’s results to the manual classifications for small-range
failures, evaluating which color histogram distance method is the most effective.

RQ4: Additional Subjects. To assess the generalizability of VERVE, we evaluate it with the
additional set of subjects that were not previously used to study either REDECHECK or VISER.
(a) Does VERVE effectively classify collision, element protrusion, and viewport protrusion failure
reports for the new responsive web pages? To answer this question, we investigate the results from
VERVE at the minimum, middle, and maximum viewports in the reported range for each RLF with
the additional set of subjects.
(b) Does VERVE effectively classify wrapping failure reports for the new responsive web pages?
To answer this question, we analyze the results of VERVE on the additional set of web pages for
wrapping failures at the minimum, middle, and maximum viewports in each failure’s range.
(c) Does VERVE effectively classify small-range failure reports for the new responsive web pages?
This question investigates the results of VERVE on the additional set of web pages for both the
horizontal referencing approach and the horizontal-plus-vertical referencing approach.

RQ5: Tool Efficiency. Does VERVE efficiently classify the failure reports? To determine if VERVE
operates fast enough to support its practical use in the testing of responsive web pages, we recorded
the time the tool takes to perform failure report classification for all of the subjects.

4.3. Experimental Methodology

To evaluate VERVE, we attempted to match the execution environment, as closely as is possible,
to the setup for the original REDECHECK experiments, thereby avoiding discrepancies in the results
that might be due to differences in the experimental setup between the two evaluations. We therefore
ran VERVE on an iMac with 8GB of RAM, running OS version 10.13 and using version 46 of
the Firefox browser. Similar to REDECHECK, VERVE uses Selenium WebDriver [25] to interact
with the web browser and to render web pages without scrollbars and at a fixed viewport height of
1000 pixels. To support small-range RLF classification, we integrated OpenCV [23] version 3.2 into
VERVE, thus enabling the generation and comparison of color histograms of the AOCs.

Throughout Section 4.5 as we provide answers to the research questions, we discuss instances
where VERVE disagrees with the manual classification in three different categories: subjective,
obscured, and misclassified RLFs. For subjective and obscured disagreements, VERVE classified
the RLF correctly, but human judgement of the RLF is potentially subjective (e.g., the visual
discrepancy is not substantial, only amounting to a few pixels) or obscured because REDECHECK
reported (and VERVE subsequently analyzed) different HTML elements to those actually causing
the visual anomaly. Misclassified RLFs arise when either VERVE or the manual classification were
certifiably incorrect. We discuss the reasons for each of these disagreements with each subject web
page, outlining possible steps for future work to improve VERVE, if any steps are needed.

To answer RQ1a, we ran VERVE on each of the 117 RLFs identified on the initial set of web page
subjects to reach an automatic classification. VERVE was configured to use the minimum viewport
width reported for the range of each RLF concerned. We then checked whether VERVE agreed
with the manual categorization of the RLF as decided in the original study by Walsh et al. [6]: true
positive (TPs, an observable failure), non-observable issue (NOI), or false positive (FP, no failure).
FPs are failures reported by REDECHECK that do not exhibit an issue visually in the design of the
web page or in its internal DOM representation. We then calculated the percentage agreement of
VERVE with the previous manual classification, investigating any differences in the categorization.

To answer RQ1b, we followed the same methodology as RQ1a, but ran VERVE using additional
inspection points: the middle of the range reported for the RLF by REDECHECK and the maximum
point (i.e., the upper bound) of the range. While running the experiment for RQ1b, VERVE led
us to the discovery of a defect in REDECHECK. For 35 viewport protrusion RLFs, REDECHECK

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

19

incorrectly reported the upper bound of the viewport range for the failure. Rather than rendering
a page at each possible viewport width to construct the RLG, REDECHECK normally samples the
entire range by rendering the page at intervals, performing a binary search between the last two
sampled points to identify the precise viewport widths at which the relative alignment of two HTML
elements, or the visibility of an individual element, changed. Since these RLFs were false positives,
the incorrectly reported upper bound had a further, unintended effect on VERVE’s behavior. We
found that REDECHECK would produce the correct results if we changed its interval size to 1. After
this reconfiguration, we re-ran REDECHECK for the pages involving these particular RLFs.

To answer RQ2, we ran VERVE on each of the 14 wrapping failures detected in the initial set of
25 web pages. Given the failure viewport range of each responsive layout failure, we used VERVE
to inspect and automatically classify the reported wrapping failures at the minimum, middle, and
maximum points of the range. As before, these automatic classifications were either TP, NOI, or FP.

To answer RQ3, we used VERVE to automatically classify the 195 small-range failures reported
with the initial set of web pages. Since small-range failures are restricted to a range of 1–5
viewports, only the minimum point is used to automatically classify the failure, using the viewports
immediately narrower and wider than the small-range failure as comparison points, as discussed
in Section 3.3. To establish the best histogram comparison measure, we used the full set of
methods available in the OpenCV library: Bhattacharyya Distance, Chi-Square, Alternative Chi-
Square, Correlation, Intersection, and Kullback-Leibler Divergence [23]. For the Bhattacharyya
Distance, Kullback-Leibler Divergence, Chi-Square, and Alternative Chi-Square metrics, the lower
the distance value, the better the match, with zero representing a perfect match. Since the images
compared may have different sizes, some negative values arise when using Kullback-Leibler
Divergence. With a perfect score of zero, the absolute value of this measure is used. The Correlation
and Intersection metrics, however, use a higher-is-better score. Correlation’s score is bounded at
one, while Intersection’s score is unbounded. So that we could easily and consistently compare
the results using each metric, we wrote a wrapper function around Correlation and Intersection to
convert its result to a lower-is-better score, as done by the other metrics. The wrapper for Correlation
inverts its score, while the wrapper for Intersection normalizes its score and inverts its result.

In order for VERVE to conclude that it has detected “enough” of a visual disturbance to classify
a small-range failure as TP, we needed to set a TP threshold for each metric. To establish the
thresholds, we did an initial run of VERVE to find the AOCs, create a color histogram for each
AOC, and output the distance between all pair of histograms. Throughout this process, a pair
of histograms was sourced from the failure viewport and a comparison viewport, as explained
in Algorithm 5. To automate and ensure the correctness of this process, we implemented a tool,
called THRESHOLDFINDER, and used it to establish a TP threshold for each of the six measures,
with the ultimate goal of maximizing accuracy. That is, the goal of THRESHOLDFINDER is to
automatically find the thresholds that will maximize agreement with the manual classification.
This tool takes the distances as input and uses them as candidate thresholds along with ±0.01 of
each distance. Alternating through each candidate threshold, THRESHOLDFINDER automatically
classifies each failure based on the candidate threshold. THRESHOLDFINDER’s classifications are
then compared to the manual classification to calculate an accuracy for each candidate threshold.
When matching against the manual classification, THRESHOLDFINDER uses a balanced score for
both classes, TP and FP. Ultimately, the tool reports the threshold with the maximum accuracy
from the set of candidates. Whenever multiple candidate thresholds may achieve the same accuracy,
THRESHOLDFINDER reports the threshold in the middle position of the identified set.

With VERVE using two alternative approaches to classify small-range failures (i.e., horizontal
referencing and horizontal-plus-vertical referencing), we used THRESHOLDFINDER twice with
the initial set of web pages, once for each approach. We refer to these thresholds that were
determined using only the initial set of web pages as the prospective thresholds. To establish whether
these thresholds are more generally applicable, the prospective thresholds are used by VERVE to
automatically classify the small-range failure from the additional set of web pages as part of RQ4.
While the prospective thresholds were determined using a subset of the total subjects, we used
THRESHOLDFINDER again to determine a set of retrospective thresholds using all 45 web pages.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20

As part of the discussion in Section 4.6, the retrospective thresholds are used to weigh in on the
overall performance of VERVE when it uses the prospective thresholds.

To answer RQ4, we assessed how well the findings from the first three research questions extend
to the 20 subject web pages in the additional set. Similar to the methodology for the previous
research questions, we set VERVE to investigate three inspection points for each failure range and to
automatically classify RLFs. For small-range failures, we used all six histogram methods and used
the THRESHOLDFINDER-established thresholds from RQ3 to classify the failures from the subjects.
Unlike the previous experiments, for this new set of web pages, we manually classified the failures
produced by REDECHECK to compare with the classifications automatically produced by VERVE.

To control a validity threat arising from the lack of true positive small-range failures in the
additional set of pages reported by REDECHECK, we manually injected faults into each page from
the additional set to create small-range failures suitable for analysis as part of this research question.
To complete this task, the first author manually selected a target element that seemed likely to cause
a layout failure if displaced. The first author then made two changes to the page. First, they manually
injected a single media query rule into each page, with the viewport range of 992–995 pixels wide.
Secondly, they then added CSS rules nested within this query pertaining to the margin-left or
margin-top property of the chosen element to cause it to be offset from its original position within
the range of the media query. Both of these modifications were intended to produce a layout failure
limited to a small number of viewport widths that REDECHECK would report as a small-range
failure. We chose the range of 992–995 pixels since the majority of the additional set of subjects has
a manually programmed breakpoint in the CSS at 992 pixels, making that position in the viewport
range a realistic position where a small-range defect may occur in practice.

Finally, to answer RQ5, we ran VERVE for all 469 RLFs from our entire set of 45 web page
subjects, examining each one at the lower bound of the range reported by REDECHECK, and
recording the time taken for VERVE to run in each instance. We repeated this process 30 times for
each RLF to obtain a reliable estimate of VERVE’s running time and to minimize the chance effects
that might be caused by, for example, the underlying operating system hosting the experiments.

VERVE’s runtime includes a 200 millisecond added delay, used for all web pages and experiments
in this paper, to allow the HTML elements to load and “settle” into their final location and support,
for instance, JavaScript-programmed transitional effects. This delay time is repeated whenever
VERVE resizes the browser, scrolls the web page, or changes the opacity of an element, meaning
that multiple delays may be introduced throughout the entire classification process. We recorded
VERVE’s execution times with and without this delay. Importantly, we excluded the time to load the
web page and resize the browser from our measurements as this cost is shared by any technique,
whether manual, semi-automated, or automated through the use of VERVE. All of the recorded
times account for the overhead of finding the offending HTML elements, visually confirming and
classifying the failure with VERVE, and writing to disk all the diagnostic images of the web pages.

4.4. Threats to Validity

One threat to the validity of this paper’s results is the extent to which they generalize to other
web pages. However, care was taken to ensure the overall set of subjects were diverse in terms
of functionality and complexity, thus representing as wide a variety of web pages as possible. As
discussed in Section 4.1, the initial set of subjects was drawn from the study by Walsh et al. [6],
while the additional set contains subjects new to this paper. We selected the new subjects both
by using a random URL generator and by browsing responsive theme templates that are freely
available for public use. As Tables I(a) and I(b) show, the subjects vary considerably in complexity
from 42 to 1470 HTML elements and from 112 to 19722 CSS declarations. The functionality
and responsive layout of the chosen web pages also differ substantially; from SB-Admin-2, a
template for back-end administrative portals; to DaysOld, providing calendar features; and Airbnb,
supporting international e-commerce corporations. Since the set of additional subjects contained
only false positive reports and therefore did not contain any small-range failures, we manually
injected code to construct them, as detailed in Section 4.3. Even though these failures are synthetic

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

21

— and so may not be representative of all real-world small-range failures — we judge that they
exemplify the concerns that practicing web developers have about this type of layout defect [20].

The validity of this paper’s experiments hinges on accurately matching manual classifications
of REDECHECK’s failure reports with the classifications automatically produced by VERVE. Since
the manual results from the experimental evaluation of REDECHECK [6] (involving the initial set
of subjects) did not include the XPath of offending elements, the failures were manually matched
using the available snapshots. These snapshots, combined with the type of failure, range, and name
of the web page enabled us to confidently perform the matching. For the additional set of subjects,
there was no pre-existing manual classification, and so this was a task undertaken by the first author.
Since the conclusions of the manual process are inherently subjective, we make our classifications
and VERVE’s results publicly available for independent evaluation at verve-tool.github.io.
Importantly, we judge that many of the failures raised by REDECHECK have very little subjectivity
for these additional subjects and can be easily classified, thereby limiting this validity threat.

A further threat to validity is a defective implementation of the VERVE tool, which would
compromise its classification of the responsive layout failures reported by REDECHECK. To control
this threat, we configured VERVE to keep a record of all the images used to evaluate each responsive
layout failure. Furthermore, VERVE also maintained a record of the coordinates of each offending
element. We consulted these records during the examination of all mismatched classifications, thus
helping us to ensure that the prototype operated correctly. To further establish a confidence in the
correctness of VERVE, we regularly performed additional manual and automated testing.

Furthermore, VERVE’s use of the Firefox web browser and the Selenium testing tool is another
validity threat. Yet, Firefox is a popular browser that is frequently used for RWD testing and
therefore a good option for ensuring the representativeness of the results. Since this paper’s
experiments exclusively report on the use of VERVE on MacOS, we controlled this validity threat
by trying the tool on other operating systems, ultimately confirming that its classifications are
similar. We are also confident that Selenium did not compromise VERVE’s correctness because,
in addition to our error-free experiences when using Selenium, this web automation framework has
a large and active user and developer community respectively committed to reporting and fixing
defects. Similarly, defects in the OpenCV library are also a validity threat that may compromise
this paper’s experimental results. Even though OpenCV is a widely used library for image analysis,
we addressed this concern by manually confirming OpenCV’s analysis of select images and by
following the best practices for its configuration and use (e.g., [24]).

Finally, since the timing results for RQ5 are subject to the interference of background operating
system processes, we ran all of the experiments 30 times to mitigate the possibility of bias in our
results. Importantly, to support the replication of this paper’s experiments and to further control all
the aforementioned validity threats, we made the VERVE tool, its documentation, and the scripts
needed to run the experiments all available at github.com/verve-tool/verve in a GitHub
repository. To further support the confirmation of this paper’s results, we have made a screenshot of
every REDECHECK RLF report, a summary of the manual classification results, and details about
VERVE’s automatic classification available at the verve-tool.github.io site.

4.5. Experimental Results

RQ1: Element Collision, Element Protrusion, and Viewport Protrusion Failures.
RQ1(a) Can VERVE automatically classify failure reports for these types of failures and how does
it compare to manual classification? Table II gives the results from running VERVE on the outputs
of REDECHECK and their agreement with the manual classification performed by Walsh et al. [6].
For completeness, Table III(a) gives the full, broken down set of manually classified results from
the original Walsh et al. study. For this research question, we focus on the results from the
smallest viewport in the failures reported range, called the “Minimum”. The numbers in parentheses
correspond to the results obtained with the old version of the “best effort” part of the analysis for
viewport protrusion that was used in the technique from the conference version of this paper, as

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22

Table II. The results from using VERVE to classify the element collision, element protrusion, and viewport
protrusion responsive layout failures in the initial set of web pages after inspecting the “Minimum” of
the reported failure range. In this table “TP”, “NOI”, and “FP” respectively denote a true positive, non-
observable issue, and false positive, as explained in Section 4.3. The numbers in parentheses correspond to
the results obtained with the old version of the “best effort” part of the analysis that was used in the technique

presented in the conference version of this paper, as discussed in Section 3.1.

Minimum

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - 1/1 - - 2/2 - 8/8 - - 11
AccountKiller - - - - - - - - - -
AirBnb - 1/1 - - 1/4 3/- (1) 2/- (3) 2/4 - 9
BugMeNot - - - 1/1 3/3 - (1) 2/2 (1) -/- - 6
CloudConvert 1/1 - - - - - - - - 1
Consumer-Reports 1/- 6/7 - 1/1 3/3 - 9/9 3/3 - 23
Covered-Calendar - - - - - - - 3/3 - 3
Days-Old - - - - - - - 1/1 - 1
Dictation - - - - - - - 1/1 - 1
Duolingo 1/- -/1 - - - - 2/2 2/2 - 5
Honey - - - - 8/8 - - 2/2 - 10
HotelWifiTest - - - - - - -/1 1/- - 1
Mailinator - 1/1 - - - - - - - 1
MidwayMeetup 1/1 - - - 1/1 - (-) 1/- (1) -/1 - 3
Ninite - - - - - - - - - -
Pdf-Escape - - - -/1 6/5 - 3/1 1/3 - 10
Pepfeed 4/4 3/3 - - 2/2 - 1/1 1/1 - 11
Pocket - 2/2 - - 3/3 - - - - 5
RainyMood - - - - - - - - - -
RunPee - - - - - - - - - -
TopDocumentary - 7/7 - - 4/4 - - - - 11
UserSearch - 1/1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2/2 - 2
WillMyPhoneWork 1/1 - - - 1/1 - - - - 2
ZeroDollarMovies - - - - - - - - - -

Total 9 22 - 2 34 3 (25) 28 (22) 19 - 117
Agreement with manual 7/7 22/24 - 1/3 32/36 - (21) 22/24 (19) 17/23 - -

Agreement per failure type 93.5 % 84.6 % (85.1) 83 % -

Per inspection point (87.2) 86.3 % -

discussed in Section 3.1. We explain the results obtained with the latest version of VERVE used in
this paper and then discuss the differences with the best effort viewport protrusion analysis.

Table II shows that VERVE had an 86.3% overall agreement with the manual classification, with
a further breakdown of this result by the RLF type. The “Agreement with manual” section shows
the ratio of failures for VERVE and manual classification, resulting in the reported percentages. The
second number is the manual classification total (drawn from the totals in Table III(a)), while the
first is the number of those failures that were categorized in the same manner by VERVE. At 93.5%,
the best level of agreement between manual and VERVE is for the element collision failures.

Table II shows that there were 16 instances where VERVE’s classification of an RLF did not
agree with the outcome from manual analysis. We next discuss these 16 instances in three different
categories introduced in Section 4.3, namely subjective, obscured, and misclassified RLFs.

Nine RLFs fall into the subjective category. While these RLFs have a visual impact, the difference
is so small that they are almost imperceptible to humans. Two of these cases involved changes to
two pixels in width, yielding no real observable visual difference. While these RLFs are technically
TPs, and were classified as such by VERVE, the manual analysis subjectively categorized them as
NOIs. Future work needs to take these small differences into account when analyzing RLFs.

Two further RLFs, evident in the ConsumerReports subject, were obscured. Two RLFs are
TPs, and were classified manually as such, yet VERVE reported them as NOIs. This was because
REDECHECK did not report the most specific elements involved in the failure. While VERVE’s
analysis was correct for the elements it was given by REDECHECK, there was a noticeable visual
effect detectable by humans. Since the manual analysis was not limited to the study of only the
HTML elements reported by REDECHECK, the effect of the RLF was easily spotted as a TP.
Importantly, this difference is really a bug in REDECHECK, rather than a problem with VERVE.

Two viewport protrusion RLFs were misclassified by VERVE. One viewport protrusion failure
with PDF-Escape was classified by VERVE as an NOI but was manually classified as a TP. This
is due to the overflow property of the protruding element being set as hidden. The protruding
content could therefore not be “seen” by VERVE. This result suggests the need for future work that

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

23

Table III. The manual classification of RLFs. See Table II for a full description of the columns.

(a) Manual classification of RLFs from the initial set of web pages from a prior study [6].

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range

TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - 1 - - 2 - 8 - - - - - - - 1 12
AccountKiller - - - - - - - - - 2 - - 147 - 5 154
AirBnb - 1 - - 4 - - 4 - 2 - - - - 2 13
BugMeNot - - - 1 3 - 2 - - 1 - - - - - 7
CloudConvert 1 - - - - - - - - - - - 1 - - 2
Consumer-Reports - 7 - 1 3 - 9 3 - - - - - - 1 24
Covered-Calendar - - - - - - - 3 - 2 - - - - - 5
Days-Old - - - - - - - 1 - - - - - - - 1
Dictation - - - - - - - 1 - - - - - - - 1
Duolingo - 1 - - - - 2 2 - - - 2 - - 1 8
Honey - - - - 8 - - 2 - - - - - - 3 13
HotelWifiTest - - - - - - 1 - - - - - - - 2 3
Mailinator - 1 - - - - - - - - - - - - 2 3
MidwayMeetup 1 - - - 1 - - 1 - - - - - - - 3
Ninite - - - - - - - - - 1 - 1 - - - 2
Pdf-Escape - - - 1 5 - 1 3 - - - - - - - 10
Pepfeed 4 3 - - 2 - 1 1 - 1 - - 2 - 14 28
Pocket - 2 - - 3 - - - - - - - - - 3 8
RainyMood - - - - - - - - - - - - - - - -
RunPee - - - - - - - - - - - 1 - - 5 6
TopDocumentary - 7 - - 4 - - - - - - - - - 2 13
UserSearch - 1 - - - - - - - 1 - - - - - 2
WhatShouldIReadNext - - - - - - - 2 - - - - - - - 2
WillMyPhoneWork 1 - - - 1 - - - - - - - 2 - - 4
ZeroDollarMovies - - - - - - - - - - - - - - 2 2

Total 7 24 - 3 36 - 24 23 - 10 - 4 152 - 43 326

Total per failure type 31 39 47 14 195 -

(b) The manual classification of the additional set of web pages.

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range

TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5 - - 6 - 1 1 - - - 1 - - 2 16
Forvo - - - - 3 - - - - 2 - 2 - - 29 36
GMapStreetViewPlayer - - - - 2 - - - - - - - - - - 2
HoursOf - - - - 1 - - 1 - - - - - - - 2
RetailMeNot 2 - - - 30 - - - - - 2 4 - - 15 53
SB-Admin-2 - - - - - - 1 - - - - - - - 1 2
SB-Agency - 4 - - 8 - 1 - - - - 3 - - - 16
SB-Business-Casual - - - - - - - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - - - - - - - -
SB-Creative - - - - - - - - - - - - - - - -
SB-Freelancer - - - - - - - - - - - - - - - -
SB-Grayscale - - - - - - 1 - - - - - - - - 1
SB-Landing-Page - - - - - - - - - - - 1 - - - 1
SB-New-Age - - - - - - - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - - - - - - - -
SB-Resume - 1 - - - - - - - 2 - - - - - 3
SB-Stylish-Portfolio - - - - - - - - - - - - - - 4 4
SimilarSites - - - - - - 4 - - - - - - - 1 5
Tiiime - - - - 1 - - - - - - - - - 1 2

Total 2 10 - - 51 - 8 2 - 4 2 11 - - 53 143

Total per failure type 12 51 10 17 53 -

modifies VERVE so that it manipulates the overflow property or tracks missing content from one
viewport width to another. The final viewport protrusion involved the Hotel WiFi Test subject. For
this page, content overflowing out of the viewport was classified by the VERVE tool as an NOI,
although the manual analysis correctly categorized it as a TP. In this case, the human expert had to
scroll horizontally to read the overflowing content, which did not line up correctly with elements in
the web page’s banner. With this RLF, VERVE did not detect any elements overwriting any others
— the browser renders the overflowing content to a “blank” area of the page — leading it to classify
the issue as NOI. Yet, there were other side effects of this issue that were visually observable that
VERVE does not currently account for: firstly the horizontal size of the page had changed, meaning
the user had to scroll to reach the content. Secondly, the overflowing content no longer aligned with
the header of the web page. The inability of VERVE to detect these types of effects is something that
we intend to address as part of future work, as explained in Section 6.

The final three element protrusion RLFs were misclassified by the manual analysis. VERVE found
that these were FPs, since there was no protrusion at the DOM level. The manual analysis incorrectly
reported these as NOIs, since there was no visual impact. Ultimately, we judge the root cause of this
misclassification to be a defect in REDECHECK’s collection of DOM information when constructing

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24

Table IV. The results from using VERVE for element collision, element protrusion, and viewport protrusion
failures of the initial set of web pages after inspecting the “Middle” of the reported failure range.

Middle

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - 1/1 - - 2/2 - 6/8 2/- - 11
AccountKiller - - - - - - - - - -
AirBnb - 1/1 - - 1/4 3/- 2/- 2/4 - 9
BugMeNot - - - 1/1 3/3 - (1) 2/2 (1) -/- - 6
CloudConvert 1/1 - - - - - - - - 1
Consumer-Reports - 7/7 - 1/1 3/3 - 9/9 3/3 - 23
Covered-Calendar - - - - - - - 3/3 - 3
Days-Old - - - - - - - 1/1 - 1
Dictation - - - - - - - 1/1 - 1
Duolingo 1/- -/1 - - - - 2/2 2/2 - 5
Honey - - - - 8/8 - - 2/2 - 10
HotelWifiTest - - - - - - -/1 1/- - 1
Mailinator - 1/1 - - - - - - - 1
MidwayMeetup 1/1 - - - 1/1 - 1/- -/1 - 3
Ninite - - - - - - - - - -
Pdf-Escape - - - -/1 6/5 - 2/1 2/3 - 10
Pepfeed 4/4 3/3 - - 2/2 - -/1 2/1 - 11
Pocket - 2/2 - - 3/3 - - - - 5
RainyMood - - - - - - - - - -
RunPee - - - - - - - - - -
TopDocumentary - 7/7 - - 4/4 - - - - 11
UserSearch - 1/1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2/2 - 2
WillMyPhoneWork 1/1 - - - 1/1 - - - - 2
ZeroDollarMovies - - - - - - - - - -

Total 8 23 - 2 34 3 (23) 24 (24) 23 - 117
Agreement with manual 7/7 23/24 - 1/3 32/36 - (17) 18/24 17/23 - -

Agreement per failure type 96.8 % 84.6 % (72.3) 74.5 % -

Per inspection point (82.9) 83.8 % -

the RLG, which relies on JavaScript injected into the web page, since the VERVE tool, which relies
on Selenium, reported no protrusion.

Perhaps curiously, the level of agreement went down from 87.2% to 86.3% with the use of the
“improved” best effort analysis for viewport protrusion used in this paper. This can be seen when we
compare the numbers for the “old” best effort analysis that featured in the conference version of this
paper, which appear in parentheses in Table II, with those for the improved analysis. The differences
concern three failures associated with Airbnb, BugMeNot, and MidwayMeetup. For Airbnb and
MidwayMeetup, the best effort analysis originally failed, but serendipitously matched the manual
classification of NOI. Yet, following improvements in this paper, VERVE classified the two failures
as TPs. Each corresponds to part of an image protruding out of the viewport, that given the nature of
the images concerned (e.g., for MidwayMeetup, part of a map), is difficult for a human eye to discern
that something is actually “missing” off the edge of the page. We categorize these disagreements,
therefore, as subjective. Following the improved best effort analysis, VERVE’s result for BugMeNot
matched the manual analysis result, highlighting the benefits associated with this new approach.
Conclusion for RQ1(a): VERVE demonstrates high agreement 86.3% with manual classification
when set to study the minimum point of the viewport range reported for each RLF.
RQ1(b) Within the viewport range of these types of failure, what is the point of inspection that has
the best chance of revealing a true positive? Table IV and Table V respectively show the results
from when VERVE was configured to inspect the minimum and maximum point of the viewport
range for each REDECHECK-reported RLF. The results show that VERVE’s classification can vary,
depending on the chosen inspection point. VERVE is more likely to agree with manual inspection at
an RLF’s minimum viewport width. Compared to an agreement of 86.3% at the minimum width, the
agreement for the middle and maximum point of the range drops to 83.8% and 78.6%, respectively.
We next investigate the reason for the classification differences at each of these inspection points,
referring to specific subjects to illustrate the key trade-offs in classification agreement.

The “Middle” Inspection Point. Overall, there are four RLFs for which VERVE’s classification
did not agree with the manual analysis at the middle of the viewport range, for which there was
agreement at the minimum. Each RLF was a viewport protrusion; we now discuss these on a case-
by-case basis. For the first two RLFs, the visibility of the failure varied depending on the viewport
width chosen from the range reported by REDECHECK. Thus, the change in classification reported

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

25

Table V. The results from using VERVE for element collision, element protrusion, and viewport protrusion
failures of the initial set of web pages after inspecting the “Maximum” of the reported failure range.

Maximum

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - 1/1 - - 2/2 - -/8 7/- 1/- 11
AccountKiller - - - - - - - - - -
AirBnb - 1/1 - - 1/4 3/- 2/- 2/4 - 9
BugMeNot - - - 1/1 3/3 - (1) 2/2 (1) -/- - 6
CloudConvert 1/1 - - - - - - - - 1
Consumer-Reports - 7/7 - 1/1 3/3 - 8/9 4/3 - 23
Covered-Calendar - - - - - - - 3/3 - 3
Days-Old - - - - - - - 1/1 - 1
Dictation - - - - - - - 1/1 - 1
Duolingo 1/- -/1 - - - - 2/2 2/2 - 5
Honey - - - - 8/8 - - 2/2 - 10
HotelWifiTest - - - - - - -/1 1/- - 1
Mailinator - 1/1 - - - - - - - 1
MidwayMeetup 1/1 - - - 1/1 - - 1/1 - 3
Ninite - - - - - - - - - -
Pdf-Escape - - - -/1 6/5 - 2/1 2/3 - 10
Pepfeed 4/4 3/3 - - 2/2 - -/1 2/1 - 11
Pocket - 2/2 - - 3/3 - - - - 5
RainyMood - - - - - - - - - -
RunPee - - - - - - - - - -
TopDocumentary - 7/7 - - 4/4 - - - - 11
UserSearch - 1/1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2/2 - 2
WillMyPhoneWork 1/1 - - - 1/1 - - - - 2
ZeroDollarMovies - - - - - - - - - -

Total 8 23 - 2 34 3 (15) 16 (31) 30 1 117
Agreement with manual 7/7 23/24 - 1/3 32/36 - (10) 11/24 18/23 - -

Agreement per failure type 96.8 % 84.6 % (59.6) 61.7 % -

Per inspection point (77.8) 78.6 % -

by VERVE was correct for the RLFs involving PDF-Escape and PepFeed. The manual classification
for these two RLFs is a true positive, which is accurate at the minimum viewport that REDECHECK
reports. However, as space expands, both RLFs become non-observable in the middle of the range.
Thus, the manual analysis judgement does not hold for the entire range reported for each RLF, being
correct at the minimum viewport width reported for the RLF, but incorrectly classified at the wider
viewport widths. Importantly, VERVE can automatically detect the differences in observability.

Both of the final two RLFs involve the 3-Minute Journal subject. Notably, VERVE and the manual
analysis agree that the RLF is a TP at the minimum viewport width. However, VERVE categorizes
them as NOIs at the middle of the range. In this case, content overflows the viewport, which the
tool does not properly detect, leading to a misclassification by the VERVE tool. This scenario is
essentially identical to that which we experienced with the Hotel WiFi Test subject discussed as part
of our answer to RQ1(a) — one which we intend to address as part of future work.

The “Maximum” Inspection Point. There were seven RLFs for which VERVE’s classification
matched the manual classification at the minimum and middle inspection point, but not at the
reported maximum viewport width. Again, each responsive layout failure was a viewport protrusion.
In each case, the visibility of the RLF objectively changes, becoming an NOI at this inspection point.
Similar to the first two differences identified for the middle inspection point, the manual analysis
for these RLFs is a single judgement for the entire range. Hence, it does not take into account the
change from visible to non-observable from narrower to wider viewport widths. Six of these RLFs
are with the 3-Minute Journal subject, the last RLF is from ConsumerReports.

Another notable result at the maximum point of inspection is a FP classification of a viewport
protrusion failure for 3-Minute Journal. When we investigated this issue, we found that based on
the DOM coordinates as retrieved by VERVE and REDECHECK, VERVE reported no protrusion,
yet REDECHECK reported the element as protruding by a single pixel. This is due in part to the
different ways in which the two tools extract the DOM of the page — REDECHECK uses JavaScript
injected into the page to retrieve the DOM, while VERVE uses Selenium. We encountered a similar
issue when answering RQ1(a) and we will investigate it as part of future work.

Following our improvements to the best effort analysis for viewport protrusion, the level of
agreements increase, since there was no disagreement for the failures described for RQ1a for Airbnb

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26

Table VI. Results from VERVE’s use at three inspection points on wrapping failures in the initial set of pages.

Wrapping

Minimum Middle Maximum

TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - - - - - - - - - -
AccountKiller 2/2 - - 2/2 - - 2/2 - - 2
AirBnb 2/2 - - 2/2 - - 2/2 - - 2
BugMeNot 1/1 - - 1/1 - - 1/1 - - 1
CloudConvert - - - - - - - - - -
Consumer-Reports - - - - - - - - - -
Covered-Calendar 2/2 - - 2/2 - - 2/2 - - 2
Days-Old - - - - - - - - - -
Dictation - - - - - - - - - -
Duolingo 2/- - -/2 2/- - -/2 2/- - -/2 2
Honey - - - - - - - - - -
HotelWifiTest - - - - - - - - - -
Mailinator - - - - - - - - - -
MidwayMeetup - - - - - - - - - -
Ninite 2/1 - -/1 2/1 - -/1 2/1 - -/1 2
Pdf-Escape - - - - - - - - - -
Pepfeed 1/1 - - 1/1 - - 1/1 - - 1
Pocket - - - - - - - - - -
RainyMood - - - - - - - - - -
RunPee - - 1/1 - - 1/1 - - 1/1 1
TopDocumentary - - - - - - - - - -
UserSearch 1/1 - - 1/1 - - 1/1 - - 1
WhatShouldIReadNext - - - - - - - - - -
WillMyPhoneWork - - - - - - - - - -
ZeroDollarMovies - - - - - - - - - -

Total 13 - 1 13 - 1 13 - 1 14
Agreement with manual 10/10 - 1/4 10/10 - 1/4 10/10 - 1/4 -

Per inspection point 78.6 % 78.6 % 78.6 % -

and MidwayMeetup at the middle and maximum inspection points, while the improved best effort
analysis matched the manual classification for BugMeNot, as it did at the minimum inspection point.

Conclusion for RQ1(b): VERVE is more likely to agree with manual inspection at the minimum
viewport width reported for each responsive layout failure. Nevertheless, inspection of larger
viewports in the reported range is the only way to ensure the consistency of the classification
throughout the range. The differences that are evident at wider inspection points can be explained
by three phenomena: (1) the fact that a single verdict is produced for an RLF when its visibility
may change throughout the viewport range for which it is reported; (2) the visibility/non-visibility
of an RLF can be subjective as the viewport width changes; and (3) a small number of misclassified
results by VERVE. It is important to note that the RLFs involved in the classification differences
were exclusively viewport protrusion failures.

RQ2: Wrapping Failures. For wrapping failures, Table VI shows the results from running the
VERVE tool on wrapping RLF reports produced by REDECHECK for the initial set of 25 web
pages, and the agreement of these results with the manual classification shown by Table III(a). The
results show that VERVE achieves agreement with the manual classification 78.6% of the time for
all three inspection points. VERVE disagrees with the manual analysis for three failures. Two of
these failures are with Duolingo. In these cases, the HTML elements are text-based links that form
several rows in the footer of the page. Clearly, the developer intends these to wrap as the viewport
size is reduced, potentially leaving one wrapped element on its own on a line. Therefore, the manual
analysis classified these failures as false positives, yet VERVE reported them as true positives. The
third failure is with Ninite. For this subject, the HTML elements concerned do not visually form a
row, yet were identified as such at the DOM level. Again, the manual analysis resulted in a false
positive classification, yet the VERVE tool reported a true positive.

All three of the aforementioned cases are examples of misclassification by VERVE. In the case of
Duolingo, it is difficult to judge the developer’s intent, but VERVE could potentially be improved
to detect these types of special cases, and with the Ninite example, further work could improve
REDECHECK’s detection of rows of elements as part of wrapping checks. The improvements that
we implemented as part of an enhancement to VERVE tool are discussed in Section 4.6.

Conclusion for RQ2: VERVE is likely to consistently classify wrapping failures throughout the
reported failure range. Therefore, a single point of inspection seems sufficient for automatic
classification. VERVE achieves 78.6% agreement with the manual analysis for wrapping failures

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

27

Table VII. The results from using VERVE featuring six histogram comparison measures for small-range
failures of the initial set of web pages with the horizontal referencing approach described in Section 3.3.1.

In this table, ε denotes the threshold value used for histogram comparison.

Small-range
horizontal referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection Kullback-Leibler
Distance Chi-Square Divergence
ε= 0.20 ε= 0.11 ε= 0.14 ε= 0 ε= 0.09 ε= 0.24

TP FP TP FP TP FP TP FP TP FP TP FP Total

3-Minute-Journal - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
AccountKiller 137/147 15/5 147/147 5/5 147/147 5/5 128/147 24/5 147/147 5/5 148/147 4/5 152
AirBnb - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
BugMeNot - - - - - - - - - - - - -
CloudConvert -/1 1/- 1/1 - -/1 1/- -/1 1/- -/1 1/- -/1 1/- 1
Consumer-Reports - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Covered-Calendar - - - - - - - - - - - - -
Days-Old - - - - - - - - - - - - -
Dictation - - - - - - - - - - - - -
Duolingo - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Honey 1/- 2/3 3/- -/3 3/- -/3 3/- -/3 2/- 1/3 3/- -/3 3
HotelWifiTest 1/- 1/2 1/- 1/2 2/- -/2 - 2/2 - 2/2 2/- -/2 2
Mailinator - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
MidwayMeetup - - - - - - - - - - - - -
Ninite - - - - - - - - - - - - -
Pdf-Escape - - - - - - - - - - - - -
Pepfeed -/2 16/14 5/2 11/14 5/2 11/14 -/2 16/14 2/2 14/14 5/2 11/14 16
Pocket - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 3
RainyMood - - - - - - - - - - - - -
RunPee 1/- 4/5 - 5/5 3/- 2/5 - 5/5 - 5/5 3/- 2/5 5
TopDocumentary - 2/2 - 2/2 1/- 1/2 - 2/2 - 2/2 - 2/2 2
UserSearch - - - - - - - - - - - - -
WhatShouldIReadNext - - - - - - - - - - - - -
WillMyPhoneWork 2/2 - 2/2 - 2/2 - 2/2 - -/2 2/- 2/2 - 2
ZeroDollarMovies - 2 - 2 - 2 - 2 - 2 - 2 2

Total 142 53 159 36 163 32 133 62 151 44 163 32 195
Agreement with manual 139/152 40/43 152/152 36/43 151/152 31/43 130/152 40/43 149/152 41/43 151/152 31/43 -

Agreement per measure 91.8 % 96.4 % 93.3 % 87.2 % 97.4 % 93.3 % -

with the initial set of subjects. Further work on both REDECHECK and VERVE is required to
improve the analysis of the three cases where the manual analysis disagreed with VERVE.

RQ3: Small-Range Failures. We used six histogram comparison methods in our experiment:
Bhattacharyya Distance, Chi-Square, Alternative Chi-Square, Correlation, Intersection, and
Kullback-Leibler Divergence, which make up the full set of measurement methods made available
by the OpenCV tool for the Java language [23]. As explained in Section 4.3, we used the
THRESHOLDFINDER tool to automatically determine the prospective threshold to maximize
agreement with the manual classifications for the initial set of subjects above which VERVE should
report a result as a TP. We used these same values for the additional set of subjects as part of RQ4,
which we deliberately excluded from the tuning process. The threshold numbers we obtained using
this method are reported as the ε values in the table headings against each metric in Table VII.

Table VII reports the results when automatically classifying small-range failures using
the horizontal referencing approach with each distance metric, comparing them with manual
classification. The highest level of agreement was 97.4% with Intersection, which disagrees with
manual classification for five RLFs. Of these five, two were TPs and three were FPs that were
misclassifications by VERVE. Yet, the two RLFs from Cloudconvert and Will My Phone Work are
also duplicate reports of element collision failures that VERVE was, in fact, able to successfully
classify with its element collision algorithm. Therefore, when small-range failures are also instances
of other types of failures, it is better to use VERVE’s other classification algorithms specifically
tailored for those RLF types. As the results show, those algorithms are more reliable at classifying
those RLFs, suggesting that the small-range color histogram distance method should be reserved for
situations when there is no duplicate report instance. Ultimately, this result highlights the benefits
of having multiple ways to classify an RLF, as provided by VERVE.

Table VIII shows the results of VERVE for small-range failures using the horizontal-plus-vertical
referencing approach, with the thresholds determined specifically for this approach reported as
ε values in the table. Only a single failure, a duplicate collision report from Cloudconvert is
misclassified by all six measures. The top performer, Intersection, has a 98.5% agreement and a
total of three misclassifications. Ranking second with an agreement of 97.9% are the Bhattacharyya

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

28

Table VIII. The results from using VERVE featuring six histogram comparison measures for small-range
failures of the initial set of web pages with the horizontal-plus-vertical referencing approach described in

Section 3.3.1. In this table, ε denotes the threshold value used for histogram comparison.

Small-range
horizontal-plus-vertical referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection Kullback-Leibler
Distance Chi-Square Divergence
ε= 0.23 ε= 0.46 ε= 0.82 ε= 0 ε= 0.15 ε= 1.55

TP FP TP FP TP FP TP FP TP FP TP FP Total

3-Minute-Journal - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
AccountKiller 147/147 5/5 147/147 5/5 147/147 5/5 147/147 5/5 147/147 5/5 147/147 5/5 152
AirBnb - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
BugMeNot - - - - - - - - - - - - -
CloudConvert -/1 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1/- 1
Consumer-Reports - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Covered-Calendar - - - - - - - - - - - - -
Days-Old - - - - - - - - - - - - -
Dictation - - - - - - - - - - - - -
Duolingo - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Honey - 3/3 2/- 1/3 1/- 2/3 3/- -/3 - 3/3 - 3/3 3
HotelWifiTest 1/- 1/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
Mailinator - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
MidwayMeetup - - - - - - - - - - - - -
Ninite - - - - - - - - - - - - -
Pdf-Escape - - - - - - - - - - - - -
Pepfeed -/2 16/14 2/2 14/14 -/2 16/14 2/2 14/14 2/2 14/14 -/2 16/14 16
Pocket - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 3
RainyMood - - - - - - - - - - - - -
RunPee - 5/5 - 5/5 - 5/5 - 5/5 - 5/5 - 5/5 5
TopDocumentary - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
UserSearch - - - - - - - - - - - - -
WhatShouldIReadNext - - - - - - - - - - - - -
WillMyPhoneWork 2/2 - -/2 2/- -/2 2/- 2/2 - -/2 2/- 1/2 1/- 2
ZeroDollarMovies - 2 - 2 - 2 - 2 - 2 - 2 2

Total 150 45 151 44 148 47 154 41 149 46 148 47 195
Agreement with manual 149/152 42/43 149/152 41/43 147/152 42/43 151/152 40/43 149/152 43/43 148/152 43/43 -

Agreement per measure 97.9 % 97.4 % 96.9 % 97.9 % 98.5 % 97.9 % -

Distance, Correlation, and Kullback-Leibler Divergence measures, misclassifying a total of four
failures each. Finally, the Chi-Square measure had an agreement of 97.4%, misclassifying five
responsive layout failures. With all measures achieving a high agreement with the manual
classification, the lowest was Alternative Chi-Square at 96.9%, with a total of six misclassifications.

Conclusion for RQ3: When configured to use the horizontal referencing approach, the VERVE tool
can detect small-range failures with up to a 97.4% agreement with the manual classification using
the Intersection distance metric. Moreover, with the horizontal-plus-vertical referencing approach,
VERVE is able to detect small-range failures with 98.5% agreement using Intersection. These results
suggest that Intersection is the best histogram comparison measure for use in VERVE.

RQ4: Additional Subjects.
RQ4(a) Does VERVE effectively classify collision, element protrusion, and viewport protrusion
failure reports for the new responsive web pages? Table IX furnishes the results from running
VERVE on the element collision, element protrusion, and viewport protrusion failures reported by
REDECHECK for the 20 web pages in the additional set of subjects. This table also reports the
agreement between the results of VERVE and the manual classification that we performed for the
additional set. While this table gives the results from running VERVE at the minimum inspection
point of the failure range, Tables X and XI respectively present the results from using the tool at
the middle and maximum points. It is important to note that all of the manual classifications from
Table III(b) are shown as the denominator of ratio values in all the result tables.

At the minimum and middle points of inspection, there were six failures in non-agreement, while
at the maximum there were an additional three mismatches. The six non-agreements at the minimum
and middle inspection points were all automatically classified by VERVE as TPs, whereas in our
manual classification we categorized them as NOIs. We conclude that all six are a misclassification
by VERVE. Two were viewport protrusion failures from EatThisMuch and HoursOf and had only a
few pixels changed that are not visible to the human eye. Three protrusion failures, from SB-Agency,
were a misclassification due to a shortcoming of applying Algorithm 2 on element protrusion and
viewport protrusion failures. Since this algorithm both does not make exceptions for minor changes
involving a few pixels or the color of an element, and it does not consider other elements that may

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

29

Table IX. The results from using VERVE for element collision, element protrusion, and viewport protrusion
failures of the additional set of web pages after inspecting the “Minimum” of the reported failure range.

Minimum

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5/5 - 1/- 5/6 - 2/1 -/1 - 13
Forvo - - - - 3/3 - - - - 3
GMapStreetViewPlayer - - - - 2/2 - - - - 2
HoursOf - - - - 1/1 - 1/- -/1 - 2
RetailMeNot 2/2 - - - 30/30 - - - - 32
SB-Admin-2 - - - - - - 1/1 - - 1
SB-Agency - 4/4 - 3/- 5/8 - 1/1 - - 13
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - 1/1 - - 1
SB-Landing-Page - - - - - - - - - -
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume - 1/1 - - - - - - - 1
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - 4/4 - - 4
Tiiime - - - - 1/1 - - - - 1

Total 2 10 - 4 47 - 10 - - 73
Agreement with manual 2/2 10/10 - - 47/51 - 8/8 0/2 - -

Agreement per failure type 100 % 92.2 % 80 % -

Per inspection point 91.8 % -

Table X. The results from using VERVE for element collision, element protrusion, and viewport protrusion
failures of the additional set of web pages after inspecting the “Middle” of the reported failure range.

Middle

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5/5 - 1/- 5/6 - 2/1 -/1 - 13
Forvo - - - - 3/3 - - - - 3
GMapStreetViewPlayer - - - - 2/2 - - - - 2
HoursOf - - - - 1/1 - 1/- -/1 - 2
RetailMeNot 2/2 - - - 30/30 - - - - 32
SB-Admin-2 - - - - - - 1/1 - - 1
SB-Agency - 4/4 - 3/- 5/8 - 1/1 - - 13
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - 1/1 - - 1
SB-Landing-Page - - - - - - - - - -
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume - 1/1 - - - - - - - 1
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - 4/4 - - 4
Tiiime - - - - 1/1 - - - - 1

Total 2 10 - 4 47 - 10 - - 73
Agreement with manual 2/2 10/10 - - 47/51 - 8/8 0/2 - -

Agreement per failure type 100 % 92.2 % 80 % -

Per inspection point 91.8 % -

be involved, it fails for these cases. Specifically, a container with other elements that overlap by
design with the reported protruding element may need a more sophisticated approach to visually
classify them. We plan, as part of future work, to investigate if additional heuristics would improve,
or negatively influence, the overall results. Finally, since EatThisMuch contains an HTML element
that is floating instead of protruding, VERVE’s visual approach cannot correctly classify it as an FP.

For the maximum inspection point there were three viewport failures in non-agreement with
the manual classification. VERVE classified these failures from SB-Admin-2, EatThisMuch, and
SB-Grayscale as NOI while the manual classification was TP. These failures are more visible at
the minimum point of inspection and our findings from RQ1b are evident here. Figure 1 shows
snapshots of the viewport failure from SB-Admin-2, illustrating how the failure is observable (TP)
at the narrower inspection points and becomes non-observable (NOI) at a wider inspection point.
Conclusion for RQ4(a): For the element collision, element protrusion, and viewport protrusion
failures reported by REDECHECK on the 20 pages in the additional set of subjects, VERVE’s

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30

Table XI. The results from using VERVE for element collision, element protrusion, and viewport protrusion
failures of the additional set of web pages after inspecting the “Maximum” of the reported failure range.

Maximum

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5/5 - 1/- 5/6 - 1/1 1/1 - 13
Forvo - - - - 3/3 - - - - 3
GMapStreetViewPlayer - - - - 2/2 - - - - 2
HoursOf - - - - 1/1 - 1/- -/1 - 2
RetailMeNot 2/2 - - - 30/30 - - - - 32
SB-Admin-2 - - - - - - -/1 1/- - 1
SB-Agency - 4/4 - 3/- 5/8 - 1/1 - - 13
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - -/1 1/- - 1
SB-Landing-Page - - - - - - - - - -
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume - 1/1 - - - - - - - 1
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - 4/4 - - 4
Tiiime - - - - 1/1 - - - - 1

Total 2 10 - 4 47 - 7 3 - 73
Agreement with manual 2/2 10/10 - - 47/51 - 5/8 0/2 - -

Agreement per failure type 100 % 92.2 % 50 % -

Per inspection point 87.7 % -

Table XII. Using VERVE at three inspection points on wrapping failures for the additional set of web pages.

Wrapping

Minimum Middle Maximum

TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch 1/- - -/1 1/- - -/1 1/- - -/1 1
Forvo 4/2 - -/2 4/2 - -/2 4/2 - -/2 4
GMapStreetViewPlayer - - - - - - - - - -
HoursOf - - - - - - - - - -
RetailMeNot 4/- 2/2 -/4 4/- 2/2 -/4 4/- 2/2 -/4 6
SB-Admin-2 - - - - - - - - - -
SB-Agency 3/- - -/3 3/- - -/3 3/- - -/3 3
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - - - - -
SB-Landing-Page 1/- - -/1 1/- - -/1 1/- - -/1 1
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume 2/2 - - 2/2 - - 2/2 - - 2
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - - - - -
Tiiime - - - - - - - - - -

Total 15 2 - 15 2 - 15 2 - 17
Agreement with manual 4/4 2/2 0/11 4/4 2/2 0/11 4/4 2/2 0/11 -

Per inspection point 35.3 % 35.3 % 35.3 % -

automatic classification frequently matched the manual classification. Notably, it achieved 91.8%
agreement with the manual approach, an increase from 86.3% with the initial set of subjects.

RQ4(b) Does VERVE effectively classify wrapping failure reports for the new responsive web pages?
All 17 wrapping failures reported for the additional 20 web pages were reported consistently by
VERVE at all three of the inspections points (i.e., minimum, middle, and maximum), as shown by
Table XII. This result supports the intuition that a single inspection point is sufficient for correctly
classifying the wrapping failures. However, 11 of the 17 results did not agree with our manual
classification. Although we manually classified them as FPs, VERVE automatically classified them
as TPs. Of the 11 non-agreements, four failures were never observed to form a row, although one
element is visually below the others. Again, this is an issue with REDECHECK that VERVE cannot
address based on visual information alone. However, Section 4.6 notes that we enhanced VERVE so
that it can also work at the DOM level, thereby overcoming this issue and improving these results.

In the remainder of the response to this research question, we investigate the sources of the
non-agreement with the manual classification. Notably, three of them were from RetailMeNot and

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

31

Table XIII. The results from using VERVE, featuring six histogram comparison measures for small-range
failures of the additional set of web pages with the horizontal referencing approach. In this table, ε denotes

the threshold value used for histogram comparison.

Small-range
horizontal referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection Kullback-Leibler
Distance Chi-Square Divergence
ε= 0.20 ε= 0.11 ε= 0.14 ε= 0 ε= 0.09 ε= 0.24

TP FP TP FP TP FP TP FP TP FP TP FP Total

EatThisMuch - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
Forvo 16/- 13/29 25/- 4/29 26/- 3/29 - 29/29 13/- 16/29 15/- 14/29 29
GMapStreetViewPlayer - - - - - - - - - - - - -
HoursOf - - - - - - - - - - - - -
RetailMeNot 5/- 10/15 6/- 9/15 9/- 6/15 3/- 12/15 4/- 11/15 12/- 3/15 15
SB-Admin-2 1/- -/1 1/- -/1 1/- -/1 - 1/1 - 1/1 1/- -/1 1
SB-Agency - - - - - - - - - - - - -
SB-Business-Casual - - - - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - - - - -
SB-Creative - - - - - - - - - - - - -
SB-Freelancer - - - - - - - - - - - - -
SB-Grayscale - - - - - - - - - - - - -
SB-Landing-Page - - - - - - - - - - - - -
SB-New-Age - - - - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - - - - -
SB-Resume - - - - - - - - - - - - -
SB-Stylish-Portfolio - 4/4 2/- 2/4 3/- 1/4 - 4/4 - 4/4 3/- 1/4 4
SimilarSites - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Tiiime - 1 - 1 - 1 - 1 - 1 - 1 1

Total 22 31 34 19 39 14 3 50 17 36 31 22 53
Agreement with manual - 31/53 - 19/53 - 14/53 - 50/53 - 36/53 - 22/53 -

Agreement per measure 58.5 % 35.8 % 26.4 % 94.3 % 67.9 % 41.5 % -

one was from EatThisMuch. Another two failures from Forvo and one more from SB-Landing-
Page reported textual links that do, in fact, visually wrap but should not be classified as a failure,
again suggesting that REDECHECK’s wrapping detection algorithm can be improved. An additional
wrapping failure from RetailMeNot surfaces another reason for improving REDECHECK. For this
subject, the row-aligned elements do, in fact, change position — but this seems to be intended
behavior since there are developer-defined rules that make one of these elements no longer visible
when the page is resized. Finally, three failures from SB-Agency report the wrapping of a social
media icon from a set of three circular icons. Even though the awkward wrapping of icons would
normally be a layout failure, this one includes three icons that wrap in an aesthetically pleasing
fashion that leaves the layout largely unchanged, leading us to conclude that these are subjective.

Conclusion for RQ4(b): For wrapping failures, the agreement between the manual classification
and the one reported by VERVE dropped from 78.6% to 35.3% when moving from the initial to
additional subjects. Yet, the root cause of this decrease in effectiveness seems to be inadequate
detection by the REDECHECK tool, an issue which we explain how to address in Section 4.6.

RQ4(c) Does VERVE effectively classify small-range failure reports for the new responsive web
pages? REDECHECK reported a total of 53 small-range failures from the additional set that were
all FP failures, suggesting the need for improvements to REDECHECK’s small-range detector.
Therefore, to properly evaluate VERVE on true positive reports, we manually injected small-range
failures, creating another set of small-range reports raised by REDECHECK. Our fault injection
procedure, as described in Section 4.3, led to REDECHECK detecting 96 further small-range
failures. We manually classified all of these RLFs as TPs except for a single failure that did not
pertain to the target element, which was a FP. This failure from HoursOf had an element positioned
in the middle of its container outside the failure range while inside the range was near the middle
but not identified as such. Hence, that failure was a FP since no visual disturbance was observed.

First, we investigated the results of the additional set for subjects for which we did not inject
failures. Table XIII gives the results from using VERVE on the small-range failures reported for the
additional set of web pages using horizontal referencing. This table shows that Correlation obtained
the highest level of agreement with a 94.3% match, in contrast to the conclusion for RQ3 where
we found that Intersection was the best performer for the initial subjects. Yet, for the additional set
of subjects, Intersection came in second place with 67.9% agreement, misclassifying 17 of the 53
failures as TPs. Moreover, all of these 17 were also misclassified using Bhattacharyya Distance,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

32

Table XIV. The results from using VERVE, featuring six histogram comparison measures for small-range
failures of the additional set of web pages with the horizontal-plus-vertical referencing approach. In this

table, ε denotes the threshold value used for histogram comparison.

Small-range
horizontal-plus-vertical referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection Kullback-Leibler
Distance Chi-Square Divergence
ε= 0.23 ε= 0.46 ε= 0.82 ε= 0 ε= 0.15 ε= 1.55

TP FP TP FP TP FP TP FP TP FP TP FP Total

EatThisMuch - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
Forvo 16/- 13/29 12/- 17/29 12/- 17/29 12/- 17/29 12/- 17/29 14/- 15/29 29
GMapStreetViewPlayer - - - - - - - - - - - - -
HoursOf - - - - - - - - - - - - -
RetailMeNot 4/- 11/15 2/- 13/15 2/- 13/15 3/- 12/15 2/- 13/15 4/- 11/15 15
SB-Admin-2 1/- -/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
SB-Agency - - - - - - - - - - - - -
SB-Business-Casual - - - - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - - - - -
SB-Creative - - - - - - - - - - - - -
SB-Freelancer - - - - - - - - - - - - -
SB-Grayscale - - - - - - - - - - - - -
SB-Landing-Page - - - - - - - - - - - - -
SB-New-Age - - - - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - - - - -
SB-Resume - - - - - - - - - - - - -
SB-Stylish-Portfolio - 4/4 4/- -/4 1/- 3/4 - 4/4 - 4/4 - 4/4 4
SimilarSites - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Tiiime - 1 - 1 - 1 - 1 - 1 - 1 1

Total 21 32 18 35 15 38 15 38 14 39 18 35 53
Agreement with manual - 32/53 - 35/53 - 38/53 - 38/53 - 39/53 - 35/53 -

Agreement per measure 60.4 % 66 % 71.7 % 71.7 % 73.6 % 66 % -

Chi-Square, Alternative Chi-Square, and Kullback-Leibler Divergence. Two of the 17 were also
misclassified by Correlation. A closer examination of these 17 non-agreements revealed that 12
were reporting a single textual link that changed position in reference to other textual links and in
reference of the container. Essentially, this change in position is a wrapping of the textual link that
only happens for a small-range of four viewport widths. The 12 TPs misclassified by Intersection
(as well as lower ranking measures) are perhaps best categorized as subjective while the additional
four are a misclassification on the part of VERVE.

Table XIV furnishes the results from applying VERVE with the horizontal-plus-vertical
referencing approach to the additional set of web pages. Consistent with our findings in RQ3,
Intersection ranked the highest for this set of web pages, with 73.6% agreement with the manual
classifications, misclassifying 14 out of 53 reported failures. All other measures similarly were
in non-agreement, with the same 14 failures as the top performer. The next two measures jointly
ranked second, Alternative Chi-Square and Correlation, had a 71.7% agreement. Each misclassified
one failure more than Intersection. The next jointly ranked measures, Chi-Square and Kullback-
Leibler Divergence, had a 66% agreement and misclassified a total of 18 failures. Finally, the lowest
ranked measure, Bhattacharyya Distance, had a difference of six misclassifications compared to
Intersection, with only a 60.4% agreement with the manual classifications.

In the remainder of the response to this research question, we investigate the set of small-range
reports associated with the injected failures. Example snapshots of the SB-Business-Casual subject,
featuring an injected small-range failure, are shown by Figure 11. This failure occurs at the range
of viewport widths of 992–995 pixels, where the first author originally injected the fault. Parts (a)
and (c) show the web page rendered at the 991 and 996 pixel viewport widths, respectively. These are
the comparison viewports either side of the failure viewport. At the narrower viewport of 991 pixels
wide, shown in Figure 11(a), an image element of a barista in a coffee house is positioned above a
block of text with a white background. At the wider viewport of 996 pixels, these two elements are
overlapping by design. Part (b) of the figure shows the failure at the viewport width of 992 pixels,
with these two elements positioned anomalously. Additional, unrelated changes to the layout start at
the 992 pixel viewport width and remain as the viewport is widened. These include the header of the
page where an expanded menu becomes part of the design, which also uses a larger logo. VERVE
was able to correctly classify the failure as a TP using both the horizontal referencing approach and
the horizontal-plus-vertical referencing approaches using all six different distance metrics.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

33

Table XV. The results from using VERVE, featuring six histogram comparison measures for small-range
failures of the fault-injected additional set of web pages with the horizontal referencing approach explained

in Section 3.3.1. In this table, ε denotes the threshold value used for histogram comparison.

Small-range
horizontal referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection Kullback-Leibler
Distance Chi-Square Divergence
ε= 0.20 ε= 0.11 ε= 0.14 ε= 0 ε= 0.09 ε= 0.24

TP FP TP FP TP FP TP FP TP FP TP FP Total

EatThisMuch 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3
Forvo -/9 9/- 5/9 4/- 5/9 4/- -/9 9/- -/9 9/- -/9 9/- 9
GMapStreetViewPlayer 4/4 - 4/4 - 4/4 - 2/4 2/- 4/4 - 4/4 - 4
HoursOf -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 3
RetailMeNot -/8 8/- -/8 8/- -/8 8/- -/8 8/- -/8 8/- -/8 8/- 8
SB-Admin-2 12/12 - 12/12 - 12/12 - 12/12 - 12/12 - 12/12 - 12
SB-Agency 5/5 - 5/5 - 5/5 - 5/5 - -/5 5/- 5/5 - 5
SB-Business-Casual 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1
SB-Clean-Blog -/5 5/- 3/5 2/- 3/5 2/- 3/5 2/- -/5 5/- -/5 5/- 5
SB-Coming-Soon 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3
SB-Creative -/6 6/- -/6 6/- -/6 6/- -/6 6/- -/6 6/- 4/6 2/- 6
SB-Freelancer 7/7 - 7/7 - 7/7 - 7/7 - -/7 7/- 7/7 - 7
SB-Grayscale -/5 5/- -/5 5/- -/5 5/- -/5 5/- -/5 5/- -/5 5/- 5
SB-Landing-Page 2/4 2/- 2/4 2/- 2/4 2/- -/4 4/- -/4 4/- -/4 4/- 4
SB-New-Age 2/2 - 2/2 - 2/2 - -/2 2/- 2/2 - 2/2 - 2
SB-One-Page-Wonder -/3 3/- 3/3 - 3/3 - -/3 3/- -/3 3/- 2/3 1/- 3
SB-Resume 1/4 3/- 4/4 - 4/4 - 4/4 - 1/4 3/- 1/4 3/- 4
SB-Stylish-Portfolio -/5 5/- 3/5 2/- -/5 5/- -/5 5/- -/5 5/- 3/5 2/- 5
SimilarSites -/6 6/- 6/6 - 6/6 - -/6 6/- -/6 6/- 6/6 - 6
Tiiime 1 - 1 - 1 - 1 - 1 - 1 - 1

Total 41 55 64 32 61 35 41 55 27 69 54 42 96
Agreement with manual 41/95 1/1 64/95 1/1 61/95 1/1 41/95 1/1 27/95 1/1 54/95 1/1 -

Agreement per failure type 43.8 % 67.7 % 64.6 % 43.8 % 29.2 % 57.3 % -

Table XVI. The results from using VERVE, featuring six histogram comparison measures for small-range
failures of the fault-injected additional set of pages with the horizontal-plus-vertical referencing approach

explained in Section 3.3.1. In this table, ε denotes the threshold value used for histogram comparison.

Small-range
horizontal-plus-vertical referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection Kullback-Leibler
Distance Chi-Square Divergence
ε= 0.23 ε= 0.46 ε= 0.82 ε= 0 ε= 0.15 ε= 1.55

TP FP TP FP TP FP TP FP TP FP TP FP Total

EatThisMuch 3/3 - 3/3 - -/3 3/- 3/3 - 3/3 - 3/3 - 3
Forvo 5/9 4/- 7/9 2/- -/9 9/- 9/9 - 9/9 - 5/9 4/- 9
GMapStreetViewPlayer 2/4 2/- -/4 4/- -/4 4/- 2/4 2/- 2/4 2/- 3/4 1/- 4
HoursOf -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 3
RetailMeNot 6/8 2/- 6/8 2/- -/8 8/- -/8 8/- -/8 8/- -/8 8/- 8
SB-Admin-2 12/12 - 12/12 - 12/12 - 12/12 - 12/12 - 12/12 - 12
SB-Agency 5/5 - 5/5 - 5/5 - 5/5 - 5/5 - 5/5 - 5
SB-Business-Casual 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1
SB-Clean-Blog 3/5 2/- 4/5 1/- -/5 5/- 4/5 1/- -/5 5/- -/5 5/- 5
SB-Coming-Soon 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3
SB-Creative 4/6 2/- 4/6 2/- 4/6 2/- 6/6 - 4/6 2/- 6/6 - 6
SB-Freelancer 7/7 - 7/7 - 7/7 - 7/7 - 5/7 2/- 6/7 1/- 7
SB-Grayscale -/5 5/- -/5 5/- -/5 5/- -/5 5/- -/5 5/- -/5 5/- 5
SB-Landing-Page 2/4 2/- 2/4 2/- 2/4 2/- 2/4 2/- 2/4 2/- -/4 4/- 4
SB-New-Age 2/2 - 2/2 - 2/2 - 1/2 1/- 2/2 - 2/2 - 2
SB-One-Page-Wonder 2/3 1/- 3/3 - 3/3 - -/3 3/- -/3 3/- -/3 3/- 3
SB-Resume 1/4 3/- 4/4 - -/4 4/- 4/4 - -/4 4/- 1/4 3/- 4
SB-Stylish-Portfolio 3/5 2/- 5/5 - 3/5 2/- 5/5 - 3/5 2/- 3/5 2/- 5
SimilarSites -/6 6/- 6/6 - -/6 6/- -/6 6/- -/6 6/- -/6 6/- 6
Tiiime 1 - 1 - 1 - 1 - 1 - 1 - 1

Total 62 34 75 21 43 53 65 31 52 44 51 45 96
Agreement with manual 62/95 1/1 75/95 1/1 43/95 1/1 65/95 1/1 52/95 1/1 51/95 1/1 -

Agreement per failure type 65.6 % 79.2 % 45.8 % 68.8 % 55.2 % 54.2 % -

Table XV presents the results from applying VERVE to the set of synthetic faults using the
horizontal referencing approach. Our analysis revealed that 27 failures were misclassified by VERVE
as FPs for all six measures. The top performing measure, Chi-Square, with 67.7% agreement, had
an additional four misclassifications. A close second was Alternative Chi-Square, which achieved
64.6% agreement, misclassifying three more than Chi-Square. The Kullback-Leibler Divergence
measure came in third with only 57.3% agreement. In fourth place, with only a 43.8% agreement, are
Bhattacharyya Distance and Correlation. Finally, the poorest performing measure was Intersection,
at 29.2% agreement. This result contradicts the Intersection measure’s first place performance with
the initial set, and its position as the second ranked in the non-fault-injected additional set of web
pages. We discuss these apparent contradictions in Section 4.6.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

34

Viewport Size 991 px

(a) Narrower Comparison Viewport

Viewport Size 992 px

(b) Small-range Layout Failure

Viewport Size 996 px

(c) Wider Comparison Viewport

Figure 11. Three snapshots of the SB-Business-Casual web page that capture its layout before a small-range
failure occurs, in (a), and a small-range failure with the range of 992–995 pixels in (b), and after the layout
failure in (c), as reported by the REDECHECK and correctly classified, without human intervention, as a true

positive by the VERVE tool using all six metrics and both approaches.

Table XVI presents the results from applying VERVE to the fault-injected web pages from the
additional set while using one of the six histogram comparison measures and the horizontal-plus-
vertical referencing approach. All six of the measures were in non-agreement for 12 out of the 96
failures in this set. The top performer for this set is Chi-Square with a 79.2% agreement and a
total of 20 failures in non-agreement. In second place, Correlation has 68.8% agreement with 30
misclassifications. This comparison measure is followed by Bhattacharyya Distance with 65.6%,
Intersection with 55.2%, Kullback-Leibler Divergence with 54.2%, and Alternative Chi-Square with
45.8% agreement. The most interesting result is that Intersection comes in fourth place even though
it is the top performer for the subjects in the initial set and the non-fault-injected additional set.
Conclusion for RQ4(c): For small-range failures using the horizontal referencing approach,
Correlation obtained the highest level of agreement, matching 94.3% of the time with our —
notably all FP — manual classification of the additional set of web pages. However, using the
horizontal-plus-vertical referencing approach, VERVE had the highest agreement of 73.6% when
using the Intersection measure. After injecting faults into the additional set, resulting in 95 TPs and
1 FP, the horizontal referencing approach achieved as high as 67.7% using Chi-Square. Moreover,
Chi-Square achieved the highest agreement at 79.2% using the horizontal-plus-vertical referencing
approach. Using the combined set of all web pages, Section 4.6 further explores the best performing
comparison measure and small-range classification approach, deepening the conclusion for this
research question and ultimately highlighting evidence suggesting that the VERVE tool should, by
default, use the horizontal-plus-vertical referencing approach with the Chi-Square metric.

RQ5: Tool Efficiency. VERVE took 4.08 seconds, on average, to automatically classify each
responsive failure with a median value of 3.57 seconds. Figure 12(a) furnishes a box plot of the
runtime for each type of failure with the 200ms delay that VERVE includes to allow web pages to
“settle” in layout following loading and resizing (for a more detailed discussion of this reasoning
behind adding this delay, see the methodology for this research question in Section 4.2). The runtime
for the element collision, element protrusion, viewport protrusion, and wrapping failures had similar
medians/means of 4.05/5.25, 3.88/3.98, 3.73/4.01, and 3.67/4.21 seconds, respectively, while small-
range failures had a median value of 0.99 and a mean value of 3.92 seconds. As shown in Section 3,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

35

0.0

2.5

5.0

7.5

10.0

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range
Failure type

Ru
nt

im
e

in
 s

ec
on

ds

(a) VERVE’s runtime over 30 trials using a 200 millisecond delay for opacity and scroll changes.

0.0

2.5

5.0

7.5

10.0

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range
Failure type

Ru
nt

im
e

in
 s

ec
on

ds

(b) VERVE’s runtime over 30 trials using no added delay.

Figure 12. VERVE’s execution time in seconds across all of the 469 presentation failures and 30 trials using
the horizontal-plus-vertical referencing approach. In these box plots the bottom and top whiskers show the
minimum and maximum data values excluding outliers, while the box itself represents the inter-quartile

range and the bold middle line represents the median value.

the algorithm for classifying this type of responsive layout failure is fundamentally different from
the other four, and the main reason for the difference is the need to snapshot multiple AOCs across
different viewports. To understand these execution times, it is important to note that we designed
VERVE to reuse snapshots where possible. The main reason for this is that many failures share the
same viewports required for analysis. Therefore, avoiding the recapture of the same viewport can
reduce the number of scrolling delays required. To bring this into perspective, the Accountkiller

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

36

web page from the initial set of subjects had 147 small-range failure reports in the range of 476–
480 pixels wide. Even though this causes a longer execution time for the first failure to request the
snapshots from this range, the time to retrieve a failure-specific AOC from the saved snapshots and
the time to calculate all six histogram metrics are within the processing time of the relevant failure.

Although the execution time of VERVE is normally stable, there are some subjects for which
certain trials have execution times that are far outliers from the median value. For instance, when
VERVE was configured to use the added delay setting, there was one trial for which it ran for 795.4
seconds when classifying an element collision failure reported for the TopDocumentary subject.
Importantly, this was the only outlier in execution time across the 30 trials, as evident by the fact
that the execution time for the other 29 trials was between 4.01 and 4.58 seconds. To ensure that
the performance trends in the graphs are not skewed by these rare outliers that are likely due to the
performance characteristics of the execution environment, Figure 12 presents box plots that elide the
values that are far outliers. To exclude the outliers from the plots without removing any data points,
we used the default option of the ggplot2 package in the R language for statistical computation.

To further investigate the runtime of VERVE without the influence of the aforementioned delay,
we temporarily disabled it and re-ran the timing experiments. Using this no-delay configuration,
VERVE took, on average, 2.24 seconds to classify a reported RLF with a median value of 0.91
seconds. Notably, without the delay for opacity or scrolling VERVE’s performance is better on
average. The opacity delay is used to ensure that the element is fully opaque or transparent when
required. On the other hand, scrolling is used to move the visible portion of the page, dictated by
the viewport height and width, to an AOC in order to capture a snapshot. The larger the AOC, in
proportion to the viewport, the more scrolling is required to capture the images needed for analysis
by VERVE and thus the greater number of delays that are needed in the default configuration of the
tool, further explaining the noticeable decrease in average execution time in this setting.

Closer inspection of VERVE’s automated classification results without the delay revealed good
reasons for incorporating it in the first instance. We found that without the delay, VERVE classified
three failures from BugMeNot, Ninite, and RetailMeNot differently. This was for two reasons. First,
VERVE’s command to change an element’s opacity is sometimes not fully effected through Selenium
and the web browser before a snapshot is taken, resulting in an incorrect image and a subsequent
inaccurate analysis. The second reason is that the DOM rectangle coordinates retrieved may vary if
the position of the element has not “settled” due to some JavaScript-programmed transitional effect.

Figure 12(b) furnishes a box plot of the runtime for each type of failure with no added delay. For
element collision, element protrusion, viewport protrusion, and wrapping failures the median/mean
values were 0.82/1.10, 0.85/1.01, 0.90/1.22, and 0.75/0.89 seconds, respectively. For small-range
RLFs, the median was 0.99 and the mean was 3.29 seconds. Similar to the runs of VERVE with the
added delay, the most notable difference between all five of the failure types is the runtime of small-
range failures, which is fundamentally different than other approaches. Furthermore, the median
value of 0.99 seconds for small-range remained the same with and without the added delay while
the mean was largely un-effected by the removal of the delay. Noting that both (a) and (b) of the
figure are using the same scale, the improvements to the runtime gained by removing the delay can
be observed as the box plots are lower in the time scale and are generally more compact.

Conclusion for RQ5: On average, VERVE takes a mean of 4.08 seconds to classify an RLF. This
includes the use of a 200 millisecond delay to allow web page elements to load and “settle” into
position. Without this delay, misclassifications are more likely. These results indicate that VERVE is
practical, requiring developers to wait a very short amount of time for its classification results.

4.6. Discussion

The results from the empirical study with the initial set of subjects suggest that VERVE is a good
automated alternative to the manual classification of reported presentation failures. Even though
this finding carried into the additional set of subjects, there are open points for discussion and
opportunities for improving VERVE, which this subsection examines in greater detail.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

37

Table XVII. The results from using VERVE’s two alternative approaches to small-range classification, the
horizontal referencing approach and the horizontal-plus-vertical referencing approach. This table re-presents
the results from applying the prospective thresholds used in the study over the three sets: the initial set, the
additional set, and the fault-injected additional set. The table also newly presents the totals after aggregating
the results of the three sets; it also presents the retrospective thresholds and the results from applying them.

Agreement

Threshold Values Initial Set Additional Set Fault-injected Additional Set All Sets Combined

Approach Measure prospective retrospective Using prospective Using prospective Using prospective Using prospective Using retrospective

Horizontal-plus-vertical Intersection 0.15 0.08 98.5 % 73.6 % 55.2 % 82.6 % 87.8 %
Horizontal-plus-vertical Chi-Square 0.46 0.46 97.4 % 66.0 % 79.2 % 87.5 % 87.5 %
Horizontal-plus-vertical Correlation 0.00 0.00 98.0 % 71.7 % 68.8 % 85.8 % 85.8 %
Horizontal-plus-vertical Bhattacharyya Distance 0.23 0.19 98.0 % 62.3 % 65.6 % 83.4 % 85.5 %
Horizontal-plus-vertical Alternative Chi-Square 0.82 0.30 96.9 % 71.7 % 45.8 % 78.8 % 84.6 %
Horizontal-plus-vertical Kullback-Leibler Divergence 1.55 0.48 98.0 % 66.0 % 54.2 % 80.8 % 84.0 %
Horizontal Chi-Square 0.11 0.05 96.4 % 35.9 % 67.7 % 79.1 % 80.8 %
Horizontal Alternative Chi-Square 0.14 0.05 93.3 % 26.4 % 64.6 % 75.0 % 78.8 %
Horizontal Bhattacharyya Distance 0.20 0.05 91.8 % 58.5 % 43.8 % 73.3 % 78.5 %
Horizontal Intersection 0.09 0.02 97.4 % 67.9 % 29.2 % 73.8 % 76.5 %
Horizontal Correlation 0.00 0.00 87.2 % 94.3 % 43.8 % 76.2 % 76.2 %
Horizontal Kullback-Leibler Divergence 0.24 0.01 93.3 % 41.5 % 57.3 % 75.3 % 75.9 %

Performance of Small-Range Classification Approaches: The two ways that VERVE classifies small-
range failures, namely horizontal referencing and horizontal-plus-vertical referencing, ranked the
color histogram comparison measures differently across the initial set, additional set, and the
additional set with the manually injected faults. For the horizontal referencing approach, the top
performing measure of the initial set was Intersection at 97.4% while the additional set ranked
Correlation at 94.3%. Finally, the fault injected set of subjects ranked Chi-Square as the top
performer at 67.7%. For the horizontal-plus-vertical referencing approach, the top performing
measure of the initial set was Intersection at 98.5% with all other comparison measures being close
contenders. Furthermore, Intersection emerged at the top of the additional set at 73.6% agreement.
Finally, in the fault-injected additional set Chi-Square emerged as the top performer at 79.2%.

These results show that the isolated analysis of the three sets of subjects used in the study does
not provide a clear picture of the superior small-range classification approach nor the superior
histogram metric. Moreover, the previous section cannot determine if an alternative threshold
would have performed better. To better elucidate these trade-offs, Table XVII brings together the
findings of each set and aggregates the agreement for all pages. The table also furnishes both the
prospective thresholds used in our experiments and the retrospective thresholds used to weigh in on
possible agreement improvements. The overall top performing measure for all web pages using
the prospective threshold was Chi-Square for both the horizontal referencing approach and the
horizontal-plus-vertical referencing approach. While the horizontal referencing approach achieved
79.1% agreement, the better performing approach, horizontal-plus-vertical referencing, achieved
87.5% agreement. Yet again, using the retrospective thresholds with horizontal referencing, Chi-
Square was the top performer with an agreement of 80.8%. As for the better performing approach,
horizontal-plus-vertical referencing, it had a 87.8% agreement using the Intersection measure, with
Chi-Square being a close second as a top performer using both approaches. These results suggest
that, by default, VERVE should use horizontal-plus-vertical referencing with Chi-Square.

DOM-based Improvement for Classifying Wrapping Failures: The most notable drop in
effectiveness between the initial and the additional set of subjects are those for the wrapping failures.
Compared to the manual classifications, VERVE had 78.6% using the initial set while with the
additional subjects had 35.3% agreement. The disagreements are due to failures that are actually
visually acceptable — or false positives due to a flaw in REDECHECK’s algorithm that causes it
to detect rows improperly. A visually acceptable wrapping includes a text-based element in the
footer of the page that wraps under other text-based elements, or a wrapping of icons that takes on
aesthetically pleasing formations when wrapped and does not harm the functionality of the web page
(e.g., a center-aligned row of three icons, where an element wraps, but the three icons are arranged
into a triangle formation). Improper row detection is caused by REDECHECK incorrectly detecting
that elements were horizontally aligned in a row, or flagging wrapping failures based on pairwise
comparisons of the positions of individual elements. This is a method that is often too sensitive since
it does not check, for example, that an element has wrapped beneath all other elements.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

38

Table XVIII. Results when using VERVE with an improved DOM-filter at three inspection points on
wrapping failures for the additional set of web pages.

Wrapping

Minimum Middle Maximum

TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - - 1/1 - - 1/1 - - 1/1 1
Forvo 4/2 - -/2 4/2 - -/2 4/2 - -/2 4
GMapStreetViewPlayer - - - - - - - - - -
HoursOf - - - - - - - - - -
RetailMeNot - 2/2 4/4 - 2/2 4/4 - 2/2 4/4 6
SB-Admin-2 - - - - - - - - - -
SB-Agency 3/- - -/3 3/- - -/3 3/- - -/3 3
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - - - - -
SB-Landing-Page 1/- - -/1 1/- - -/1 1/- - -/1 1
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume 2/2 - - 2/2 - - 2/2 - - 2
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - - - - -
Tiiime - - - - - - - - - -

Total 10 2 5 10 2 5 10 2 5 17
Agreement with manual 4/4 2/2 5/11 4/4 2/2 5/11 4/4 2/2 5/11 -

Per inspection point 64.7 % 64.7 % 64.7 % -

To overcome these issues, we updated VERVE’s DOM-filter phase to ensure that (a) there are at
least three elements in the original “row” (as per the original REDECHECK algorithm [6]); (b) that
the wrapped element is below all other row elements, and not just the last row element, and (c)
that all row elements are visible with a width and height greater than zero. Table XVIII shows the
results when VERVE uses the upgraded DOM-filter phase, revealing an improvement in VERVE’s
agreement with the manual classification from 35.3% to 64.7% with the additional set of web pages.

Questioning Observability: Whether an RLF is observable or not may not always be obvious,
making final decisions, particularly manual classifications, somewhat subjective. Essentially, the
task requires an observer to recognize a difference between what is visually expected and what is
visually apparent. We found that the previously published manual classifications due to Walsh et
al. [6] that we used in this paper were subject to some “exemptions” based on the severity of a
change. For instance, consider an element A that is overlapping the coordinates of an element B,
with n pixels of element A overlapping n pixels of B. In this case, a human would decide whether
the n pixels of overlap are negligible and if the overall aesthetics remain satisfactory. Both of these
criteria are not easily defined and remain, to a great extent, subjective. Nevertheless, we aim to
study them in future work. For example, it may be useful to measure the number of changed pixels,
determine if a color change is visible to the human eye, or introduce heuristics concerning AOC size.

It is also worth noting that the previously published manual classifications used in our experiments
exhibit some biases that we were not aware of prior to using them. After a deeper examination, we
found that some classifications were neither confined to the type of failure nor the XPaths reported.
For instance, an element was reported as protruding out of its ancestor element, which was an NOI,
but was manually classified as a TP because it was also protruding out of the parent element. We
considered, therefore, reclassifying some of the RLFs. Although this would have been justifiable, we
refrained from “tampering” with the benchmark data in this way so as to not introduce any further
sources of bias. Moreover, reclassification would not tackle the underlying subjective nature that is
inherent in any manual classification of responsive layout failures in web pages.

Since all of the previous research that we reviewed in the area of testing web page presentation
failures used the manual approach to visually confirming the reports from a prototype tool, the
accuracy and consistency of the manual approach will influence, positively or negatively, the
research outcomes. Although we did not experimentally study the output of other testing tools and
different types of web page presentation failures, the results make it clear that there are benefits
associated with the automated confirmation and classification of web page presentation failures.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

39

Revealing the Layers of a Web Page: Using the CSS opacity property is one way to verify
presentation failures without making VERVE browser dependent. Another strategy is to manipulate
the visibility property. However, descendant HTML elements can override the inheritance of
this property, meaning that VERVE would have to traverse the DOM tree, potentially adding extra
implementation complexity and execution time overhead. Moreover, a limitation of manipulating
the opacity property emerged when a snapshot was taken before the element had become fully
transparent. We discovered this to be the case for one particular viewport protrusion RLF where an
input HTML element was only partially transparent when snapshots of the AOC were taken. This
led us to insert an optional delay into VERVE so that it would wait for elements to become fully
transparent. We discussed the effect of adding this delay on the time needed to run VERVE in RQ5,
finding that VERVE was still practical for developers to run. With this evidence, multiple delays may
be needed if the visibility property is used instead of opacity for each descendant element.
Future work needs to confirm the viability of using the visibility property instead.

5. RELATED WORK

While, to our knowledge, there has been no prior research on the automatic visual classification
of the presentation failures in responsive web pages, there is an extensive literature on web testing.
For instance, WEBDIFF [26], CROSST [27], CROSSCHECK [28], and X-PERT [29] are all cross-
browser testing tools that use the DOM and/or screenshots to detect variations when a page is viewed
on different browsers. It is also worth noting that, like the VERVE tool presented in this paper, both
WEBDIFF and CROSSCHECK use image-based histograms and distance functions to perform tasks
for web testing purposes. Similarly, tools such as WEBSEE [30] and FIERYEYE [31] use the prior
version of a page as an oracle to detect presentation failures [30]. Unlike this paper, none of these
tools combine the manipulation of HTML element opacity and the use of histogram-based image
comparison to confirm and classify responsive layout failures in web pages. Finally, even though
there are several prior approaches to web testing that support, for instance, the automated generation
and replay of test cases by monitoring user behavior (e.g., [32–34]), none of them explicitly record
the information necessary to enable the detection of layout failures on responsive web pages.

The REDECHECK tool has two “modes” [13]. In “regression checking” mode, the tool targets
regression issues by comparing the responsive layout of two versions of a web page [21, 35].
In “common failure checking” mode, REDECHECK automatically detects the series of common
responsive layout failures studied in this paper [6]. Like REDECHECK, the VFDETECTOR tool
also finds responsive layout failures, but can further detect layout issues in pages triggered through
human interactions [15]. Notably, tools like REDECHECK and VFDETECTOR focus on finding
responsive layout failures by analyzing the DOM of a web page, an approach that may incorrectly
surface issues that a human could not reasonably observe. This means that, while both REDECHECK
and VFDETECTOR automatically detect certain types of responsive layout failures, a developer must
still manually inspect problems at multiple viewport widths to determine whether they are visible
to humans — this is the challenging and error-prone task that VERVE effectively and automatically
handles using methods including image opacity manipulation and comparison.

There are also several tools that support the verification of the layout properties of a web page.
For instance, CASSIUS formalizes some of the semantics of CSS and supports automated reasoning
about the behavior of CSS style sheets [36]. The VIZASSERT tool extends the formal model in
CASSIUS, further supporting the automated verification of a web page’s accessible layout [37].
Finally, the CORNIPICKLE tool verifies that a web page supports the layout properties specified by a
tester [38,39]. Unlike VERVE, all these tools require some formal specification of web page layout.
Notably, while these tools focus on automatically verifying layout properties, the presented tool
confirms and classifies the responsive layout failures reported by tools like REDECHECK.

There are many tools that support the design, implementation, and testing of a web page’s
visual properties. For instance, SCRY is a reverse engineering tool that surfaces how changes in
the underlying source code will influence a page’s visual appearance [40]. Similarly, Liang et al.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

40

describe the SEESS tool that visualizes how changes to a web site’s CSS files will affect its layout,
with the aim to support the manual detection of layout failures [41]. Moreover, the VISTA tool
repairs the broken tests that focus on a web page’s visual characteristics [42]. There are also
a number of tools that seek to repair presentation failures in web pages. For instance, MFIX
repairs problems with the mobile-friendliness of a web page [43], while XFIX repairs cross-browser
issues [44, 45]. Additionally, IFIX [46], and its successor, IFIX++ [47], repair internationalization
failures using search-based and clustering techniques, while CBREPAIR addresses the same types of
failures but using constraint solving [48]. Finally, Li et al. proposed an approach that first analyzes
a person’s interaction with a web page and then visualizes some presentation failures that might
be evident to a human [9]. Since all these tools complement VERVE’s focus on automatically
confirming and classifying the layout failures reported by tools like REDECHECK, together they
constitute a full-featured strategy for improving the layout of responsively designed web pages.

There are many tools that support manual developer checking of responsive pages. For instance,
multi-screenshot tools (e.g., [10, 11, 49]) showcase a web page at a few common viewport widths,
while others (e.g., [12, 50, 51]) allow the tester to resize the viewport to a custom size. However,
empirical studies by Walsh et al. point out that these methods often overlook layout failures that tools
like REDECHECK can automatically detect [6]. Also, in contrast to the graphical reports produced
by tools like REDECHECK, VFDETECTOR, and VERVE, all of the aforementioned developer tools
have another limitation: the tester must inspect each screenshot, a process that is manual and often
time consuming and error-prone. Finally, while FIGHTING LAYOUT BUGS detects some types of
layout failures [22], it only checks static layout properties and thus, unlike REDECHECK and the
VERVE tool presented in this paper, it is not applicable to the testing of responsive web pages.

Although this paper focuses on testing the responsive layout of a web page, it is worth pointing out
that there are many prior approaches that concentrate on testing the visual properties and layout of
either a desktop application or a mobile app. For instance, Memon and Soffa presented a regression
testing technique for the graphical user interface (GUI) of a desktop application [52], while
Brooks and Memon showed how to leverage user interaction profiles to guide GUI testing [53].
Furthermore, Hammoud et al. and Zaraket et al. proposed GUICOP [54,55], a GUI testing approach
that utilizes a specification language for capturing information about the layout and appearance
of GUI components. This enables functional test cases to tolerate differences in the execution
environment in which they are run — for example a change of screen resolution — while also
checking properties of the GUI itself, such as the appearance and relative positioning of certain
elements. The VERVE tool presented in this paper is also broadly similar to two prior tools for
testing a graphical user interface, with both GUIDE and SIKULI highlighting the differences between
GUI versions and the latter tool using OpenCV to perform this task [56, 57]. Finally, in response to
the rising prevalence of mobile apps, Morgado and Paiva and Amalfitano et al. developed testing
techniques for Android apps, with the first of these papers identifying and testing recurring app
behaviors [58] and the second focusing on ensuring the correctness of an app’s layout when a
mobile device’s orientation changes [59]. Similar to this paper’s approach, Moran et al. presented
a technique that highlights the way in which a mobile app’s layout and visual properties violate
established design guidelines [60]. Since, like in the area of responsive web design, there are also
many developer-focused tools for mobile app testing, Ardito et al. empirically compared two of
the most prominent ones to confirm that the testing of an app’s visual and layout properties is
particularly challenging [61], as this paper argues is also the case for responsive web pages.

6. CONCLUSIONS AND FUTURE WORK

Even though responsive web design principles and frameworks enable the creation of web pages
that display correctly on a wide variety of devices with differing viewport widths, developers
may still introduce presentational problems in a web page. Even though the REDECHECK tool
automatically surfaces the responsive layout failures that are likely to exist in a web page, without
additional tool support a human web developer must manually classify each RLF as being a true

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

41

positive, false positive, or a non-observable issue — a process that is often time consuming,
subjective, and error-prone. The conference version of this paper introduced the VISER tool
that could automatically perform this classification by manipulating the opacity of the HTML
elements in a web page. While the empirical results from that paper highlighted the efficiency and
effectiveness of VISER, the tool was limited because it could only classify the element collision,
element protrusion, and viewport protrusion layout failures reported by REDECHECK.

Since VISER does not classify either the wrapping or small-range responsive layout failures, this
paper presented “VERVE” (Visual classifiEr for ResponsiVe tEsting), a tool that can automatically
classify all five types of the RLFs reported by REDECHECK’s DOM-based approach. Along with
extending VISER’s opacity manipulation method to detect element wrapping failures, VERVE
employs a histogram-based image comparison method that effectively classifies the small-range
failures reported by REDECHECK. Considering 20 new pages in addition to the 25 web pages from
the conference paper’s experiments, this paper reported on the results from a comprehensive study of
VERVE’s efficiency and effectiveness, revealing its classification of all five types of RLFs frequently
agrees with the manual one produced by expert web developers. The experiments also showed that
VERVE normally took about 4 seconds to classify an RLF among the 469 reported by REDECHECK.
Given that RLF classification with VERVE is less subjective and error-prone than the same manual
process performed by a human web developer, this paper’s results suggest that the presented tool
can support the testing of web pages that must responsively display at different viewport widths.

Given the demonstrated benefits of VERVE, future work will involve using the tool to
visually confirm and classify the same layout failures when using different, for instance, runtime
environments or browsers, thereby better supporting cross-browser testing. Although the empirical
results demonstrate that VERVE integrates well with REDECHECK, we ultimately discovered that
some defects in REDECHECK limit the functionality of the presented approach, thus motivating
future work to ensure that VERVE integrates with other DOM-based tools for responsive web testing,
like VFDETECTOR [15]. We will also improve VERVE to resolve some of the other limitations
highlighted by this paper’s empirical results. For instance, since VERVE classifies an RLF as a
true positive even if it only exhibits a visual disturbance of a few pixels, we plan to develop new
approaches for highlighting those differences most noticeable and meaningful to humans. After
integrating VERVE into an even more full-featured web development workflow, we plan to conduct
additional experiments to evaluate its efficiency and effectiveness, always increasing the realism,
complexity, and number of web pages used as subjects. As we apply VERVE to more web pages,
we will also run it with different browsers and operating systems, thereby further confirming its
generalizability for web testing. Ultimately, we see both REDECHECK and VERVE playing an
important role in helping web developers to surface and classify responsive layout failures, triage
and prioritize these defect reports, and automatically implement bug fixes for a defective web page.

ACKNOWLEDGMENT

We would like to thank Thomas Walsh for his assistance with the REDECHECK tool and for help
with preparing the subject web pages featured in this paper’s empirical study.

REFERENCES

1. McMillen J. 10 reasons your website needs to be mobile optimized.
http://blog.teamtreehouse.com/10-reasons-website-needs-mobile-optimized.

2. Marcotte E. Responsive Web Design. A Book Apart, 2014.
3. Bootstrap Responsive Web Design Framework. URL https://getbootstrap.com/.
4. Foundation Responsive Web Design Framework. URL http://foundation.zurb.com/.
5. Creative bloq: Web design trends 2015-16: the long scroll

http://www.creativebloq.com/web-design/web-design-trends-2015-16-long-scroll-81516343.
6. Walsh TA, Kapfhammer GM, McMinn P. Automated layout failure detection for responsive web pages without an

explicit oracle. Proceedings of the International Conference on Software Testing and Analysis, 2017.
7. Robins D, Holmes J. Aesthetics and credibility in web site design. Information Processing & Management 2008;

44(1).

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

42

8. Cyr D, Head M, Ivanov A. Design aesthetics leading to M-loyalty in mobile commerce. Information & Management
2006; 43(8).

9. Li W, Harrold MJ, Görg C. Detecting user-visible failures in AJAX web applications by analyzing users’ interaction
behaviors. Proceedings of the 25th International Conference on Automated Software Engineering, 2010.

10. Responsinator. URL https://www.responsinator.com/.
11. Responsive design checker. URL http://responsivedesignchecker.com.
12. Viewport resizer. URL http://lab.maltewassermann.com/viewport-resizer/.
13. Walsh TA, Kapfhammer GM, McMinn P. REDECHECK: An automatic layout failure checking tool for

responsively designed web pages. Proceedings of the International Conference on Software Testing and Analysis –
Demonstration Papers, 2017.

14. World Wide Web Consortium (W3C). HTML 5.2 2017. URL https://www.w3.org/TR/html52/.
15. Ryou Y, Ryu S. Automatic detection of visibility faults by layout changes in HTML5 web pages. Proceedings of

the 11th International Conference on Software Testing, Validation and Verification, 2018.
16. Althomali I, Kapfhammer GM, McMinn P. Automatic visual verification of layout failures in responsively designed

web pages. International Conference on Software Testing, Verification and Validation, 2019.
17. Connolly R, Hoar R. Fundamentals of Web Development. Pearson, 2017.
18. (W3C) WWWC. XPath syntax. URL https://www.w3schools.com/xml/xpath_syntax.asp.
19. Mahajan S, Halfond WGJ. Finding HTML presentation failures using image comparison techniques. Proceedings

of the 29th International Conference on Automated Software Engineering, 2014.
20. CSS3 Media Queries: Simple Gotchas and Easy Fixes. URL https://www.crimsondesigns.com/blog/

css3-media-queries-simple-gotchas-easy-fixes/.
21. Walsh TA, McMinn P, Kapfhammer GM. Automatic detection of potential layout faults following changes to

responsive web pages. Proceedings of the 30th International Conference on Automated Software Engineering,
2015.

22. Fighting layout bugs. URL https://code.google.com/archive/p/fighting-layout-bugs/.
23. OpenCV: Open-source computer vision library. URL https://opencv.org.
24. Bradski G, Kaehler A. Learning OpenCV 3. O’Reilly, 2016.
25. Selenium: Web browser automation. URL http://www.seleniumhq.org/.
26. Choudhary SR, Versee H, Orso A. WebDiff: Automated identification of cross-browser issues in web applications.

Proceedings of the 26th International Conference on Software Maintenance, 2010.
27. Mesbah A, Prasad MR. Automated cross-browser compatibility testing. Proceedings of the 33rd International

Conference on Software Engineering, 2011.
28. Choudhary SR, Prasad MR, Orso A. CrossCheck: Combining crawling and differencing to better detect cross-

browser incompatibilities in web applications. Proceedings of the 5th International Conference on Software Testing,
Verification and Validation, 2012.

29. Roy Choudhary S, Prasad MR, Orso A. X-PERT: Accurate identification of cross-browser issues in web
applications. Proceedings of the 35th International Conference on Software Engineering, 2013.

30. Mahajan S, Halfond WGJ. Detection and localization of HTML presentation failures using computer vision-based
techniques. Proceedings of the 8th International Conference on Software Testing, Verification and Validation, 2015.

31. Mahajan S, Li B, Behnamghader P, Halfond WGJ. Using visual symptoms for debugging presentation failures
in web applications. Proceedings of the 10th International Conference on Software Testing, Verification and
Validation, 2016.

32. Sprenkle S, Gibson E, Sampath S, Pollock L. Automated replay and failure detection for web applications.
Proceedings of the 20th International Conference on Automated Software Engineering, 2005.

33. Sampath S, Sprenkle S, Gibson E, Pollock L, Souter Greenwald A. Applying concept analysis to user-session-based
testing of web applications. Transactions on Software Engineering 2007; 33(10).

34. Sprenkle SE, Pollock LL, Simko LM. Configuring effective navigation models and abstract test cases for web
applications by analyzing user behaviour. Software Testing, Verification and Reliability 2013; 23(6).

35. Walsh TA, Kapfhammer GM, McMinn P. Automatically identifying potential regressions in the layout of responsive
web pages. Software Testing, Verification and Reliability 2020; 30(6).

36. Panchekha P, Torlak E. Automated reasoning for web page layout. Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, 2016.

37. Panchekha P, Geller AT, Ernst MD, Tatlock Z, Kamil S. Verifying that web pages have accessible layout.
Proceedings of the 39th International Conference on Programming Language Design and Implementation, 2018.

38. Hallé S, Bergeron N, Guerin F, Le Breton G. Testing web applications through layout constraints. Proceedings of
the 8th International Conference on Software Testing, Verification and Validation, 2015.

39. Hallé S, Bergeron N, Guérin F, Le Breton G, Beroual O. Declarative layout constraints for testing web applications.
Journal of Logical and Algebraic Methods in Programming 2016; 85.

40. Burg B, Ko AJ, Ernst MD. Explaining visual changes in web interfaces. Proceedings of the 28th Annual Symposium
on User Interface Software and Technology, 2015.

41. Liang HS, Kuo KH, Lee PW, Chan YC, Lin YC, Chen MY. SeeSS: Seeing what I broke —- visualizing change
impact of cascading style sheets. Proceedings of the 26th Annual Symposium on User Interface Software and
Technology, 2013.

42. Stocco A, Yandrapally R, Mesbah A. Visual web test repair. Proceedings of the 26th Joint Meeting of the European
Software Engineering Conference and the Symposium on the Foundations of Software Engineering, 2018.

43. Mahajan S, Abolhassani N, McMinn P, Halfond WGJ. Automated repair of mobile friendly problems in web pages.
Proceedings of the 40th International Conference on Software Engineering, 2018.

44. Mahajan S, Alameer A, McMinn P, Halfond WG. Automated repair of layout cross browser issues using search-
based techniques. Proceedings of the International Conference on Software Testing and Analysis, 2017; 249–260.

45. Mahajan S, Alameer A, McMinn P, Halfond WG. XFix: Automated tool for repair of layout cross browser issues.
Proceedings of the International Conference on Software Testing and Analysis, 2017; 368–371.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

43

46. Mahajan S, Alameer A, McMinn P, Halfond WG. Automated repair of internationalization failures using style
similarity clustering and search-based techniques. Proceedings of the 11th International Conference on Software
Testing, Validation and Verification, 2018.

47. Mahajan S, Alameer A, McMinn P, Halfond WG. Effective automated repair of internationalization presentation
failures in web applications using style similarity clustering and search-based techniques. Software Testing,
Verification and Reliability To Appear; .

48. Alameer A, Chiou PT, Halfond WGJ. Efficiently repairing internationalization presentation failures by solving
layout constraints. Proceedings of the 12th International Conference on Software Testing, Validation and
Verification, 2019; 172–182.

49. Responsive Design Testing. URL http://mattkersley.com/responsive/.
50. Firefox developer tools: Responsive design mode. URL https://developer.mozilla.org/en-US/

docs/Tools/Responsive_Design_Mode.
51. ResponsivePX. URL http://responsivepx.com/.
52. Memon AM, Soffa ML. Regression testing of GUIs. Proceedings of the 11th International Symposium on

Foundations of Software Engineering, 2003.
53. Brooks PA, Memon AM. Automated GUI testing guided by usage profiles. Proceedings of the 22nd International

Conference on Automated Software Engineering, 2007.
54. Hammoud FA Dalal amd Zaraket, Masri W. GUICop: Approach and toolset for specification-based GUI testing.

Software Testing, Verification and Reliability 2017; 27(8).
55. Zaraket FA, Masri W, Adam M, Hammoud D, Hamzeh R, Farhat R, Khamissi E, Noujaim J. GUICop: specification-

based gui testing. Proceedings of the International Conference on Software Testing, Verification and Validation
(ICST 2012), 2012.

56. Xie Q, Grechanik M, Fu C, Cumby C. Guide: A GUI differentiator. Proceedings of the International Conference
on Software Maintenance, 2009.

57. Chang TH, Yeh T, Miller RC. GUI testing using computer vision. Proceedings of the International Conference on
Human Factors in Computing Systems, 2010.

58. Morgado IC, Paiva AC. Mobile GUI testing. Software Quality Journal 2018; 26(4).
59. Amalfitano D, Riccio V, Paiva ACR, Fasolino AR. Why does the orientation change mess up my Android

application? From GUI failures to code faults. Software Testing, Verification and Reliability 2018; 28(1).
60. Moran K, Li B, Bernal-Cárdenas C, Jelf D, Poshyvanyk D. Automated reporting of GUI design violations for

mobile apps. Proceedings of the 40th International Conference on Software Engineering, 2018.
61. Ardito L, Coppola R, Morisio M, Torchiano M. Espresso vs. EyeAutomate: An experiment for the comparison

of two generations of Android GUI testing. Proceedings of the International Conference on Evaluation and
Assessment on Software Engineering, 2019.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

