
STICCER: Fast and Effective Database Test Suite
Reduction Through Merging of Similar Test Cases

Abdullah Alsharif
University of Sheffield

Gregory M. Kapfhammer
Allegheny College

Phil McMinn
University of Sheffield

Abstract—Since relational databases support many software
applications, industry professionals recommend testing both
database queries and the underlying database schema that
contains complex integrity constraints. These constraints, which
include primary and foreign keys, NOT NULL, and arbitrary
CHECK constraints, are important because they protect the con-
sistency and coherency of data in the relational database. Since
testing integrity constraints is potentially an arduous task, human
testers can use new tools to automatically generate test suites that
effectively find schema faults. However, these tool-generated test
suites often contain many lengthy tests that may both increase
the time overhead of regression testing and limit the ability
of human testers to understand them. Aiming to reduce the
size of automatically generated test suites for database schemas,
this paper introduces STICCER, a technique that finds overlaps
between test cases, merging database interactions from similar
tests and removing others. By systematically discarding and
merging redundant tests, STICCER creates a reduced test suite
that is guaranteed to have the same coverage as the original one.
Using thirty-four relational database schemas, we experimentally
compared STICCER to two greedy test suite reduction techniques
and a random method. The results show that, compared to the
greedy and random methods, STICCER is the most effective at
reducing the number of test cases and database interactions while
maintaining test effectiveness as measured by the mutation score.

I. INTRODUCTION

Many software applications rely on relational databases
for critical data storage, thereby making their correctness
paramount and leading industry experts to advise that they
be rigorously tested [1]–[3]. Developing a relational database
involves the design of a schema that defines its data structures,
relationships, and integrity constraints [4]. While a correct
schema design ensures the integrity of the data within the
database, inadvertent definitions of it (i.e., omitting constraints
or adding the wrong constraints) can manifest in a failure
that corrupts the data [5]. Testers can use automated test data
generators for the integrity constraints in a relational database
to support the schema testing process [6], [7]. These generators
try to ameliorate the task of writing tests so that developers
can focus on developing new features, thereby speeding up the
process of testing and producing a more reliable database.

Many real-world database applications contain complex
and rapidly evolving database schemas [8]–[10], suggesting
the need for efficient approaches to regression testing. Since
these schemas contain many tables, columns, and integrity
constraints, state-of-the-art automated test data generators for
schemas can generate numerous tests because they use local
search techniques to cover the test requirements [6], [7].
One approach to the regression testing of a database schema
involves re-running the automatically generated tests after

a schema modification, with follow-on steps to ensure the
test suite’s continued effectiveness by adequacy assessment
through both coverage and mutation analysis [11], [12]. The
prohibitive cost of repeated test suite execution and test
adequacy assessment suggests the need for test suite reduction
methods that can distill the suite to those tests that are essential
for maintaining the schema’s correctness during its evolution.

Automatically generated schema tests construct complex
database states that are often intertwined, thereby leading
to test dependencies that are not explicitly captured by the
requirement that the test was designed to cover. Because tra-
ditional test suite reduction methods (e.g., [13]–[15]) discard
tests only when they cover the same requirements, they are
not well-suited to reducing test suites for database schemas.
Since Section V’s results show that these traditional reducers
overlook up to 539 opportunities for test data merging in
a complex schema like iTrust, this paper presents a novel
approach to test suite reduction, called Schema Test Integrity
Constraints Combination for Efficient Reduction (STICCER),
that discards tests that redundantly cover requirements while
also merging those tests that produce similar database states.
STICCER creates a reduced test suite, thus decreasing both
the number of database interactions and restarts and lessening
the time needed for test suite execution and mutation analysis.

Using 34 relational database schemas and test data gener-
ated by two state-of-the-art methods, we experimentally com-
pared STICCER to two greedy test suite reduction techniques
and a random method. The results show that reduced test suites
produced by STICCER are up to 5X faster than the original
test suite and 2.5X faster than reduced suites created by the
traditional methods, often leading to significant decreases in
mutation analysis time. STICCER’s tests always preserve the
coverage of the test suite and rarely lead to a drop in the
mutation score, with a maximum decrease in fault detection
of 3.2%. In summary, this paper’s contributions are as follows:

1) A novel test suite reduction method, called STICCER,
that quickly and effectively reduces database test suites
by discarding and merging redundant schema tests.

2) Leveraging 34 relational database schemas running in
a popular database engine, an empirical study of STIC-
CER’s effectiveness when it reduces test suites from two
state-of-the-art test data generators, as compared to two
traditional reducers and a random baseline. The results
highlight: (i) the limitations of existing methods, (ii)
the decrease in tests and database interactions, (iii) the
impact on the mutation score, and (iv) the change in the
time taken for test execution and mutation analysis.

II. BACKGROUND

This section introduces relational database schemas, in-
tegrity constraints, and the issues associated with testing them.
It overviews automated test suite generation methods for
integrity constraint testing, and the types of generated tests. It
then reviews some traditional methods for test suite reduction
and their potential uses and limitations in decreasing the size
of the test suite for relational database schema testing.

A. Relational Databases, Schemas and Integrity Constraints

Relational database management systems (DBMSs), such as
SQLite [16] or Postgres [17], are enterprise software compo-
nents that administer one or more of relational databases, each
specified by a schema. Acting as a guard for the database’s
correctness, a relational database schema describes how data
in a database is structured, what relationships exist between
the data, and what types of data values are permissible [4].

Figure 1 highlights one aspect of a relational database:
the SQL CREATE TABLE statements that are involved in con-
structing the database’s schema. This particular database stores
information about website cookies for a web browser, involv-
ing two tables. The first CREATE TABLE statement describes
a table called cookies, for storing rows of data where each
row corresponds to an individual cookie. Nested within the
CREATE TABLE statement is a list of columns (“id” to “path”)
that describe the data to be stored in each row about each
cookie, including its name, value, and when it expires. Each
column has an associated type, such as a string (using the SQL
“TEXT” type) or an integer (using the SQL “INTEGER”).

Underneath the definition of columns (and occasionally
inline with a column definition — for example the primary key
on the ID column) are the declaration of a series of integrity
constraints on the data in the table. For example, the name,
host, and path data elements must be unique for each row
of the table when taken in combination and appear as part of
a UNIQUE integrity constraint definition. Several columns are
marked as NOT NULL, meaning they cannot be left undefined
using NULL. There is a foreign key constraint that links the
cookies table to another table in the schema — places, which
stores details about websites from which cookies originated.
The foreign key declaration specifies that each host and path

pair in the cookies table should appear as part of a row
in the places table. Following the foreign key definition is
the declaration of two CHECK constraints, involving predicates
over the expiry, last_accessed, and creation_time values in
each row. Finally, both tables involve primary keys, which like
UNIQUE constraints, require certain columns to be unique, but
with the specific purpose of identifying rows for fast retrieval.

B. The Need for Testing Database Schemas

Despite the large body of work on program testing, there has
been much less work devoted to the testing of database-related
artefacts that underpin software. One particularly neglected
aspect is the database schema, which is often implicitly
assumed to be correct [3], but yet is frequently subject to
modifications throughout an application’s lifetime [2], [8], [9].

Mistakes made when developing a database’s schema can be
particularly costly, requiring regression changes to both pro-
gram code and SQL queries. Additionally, different DBMSs
have different interpretations of the SQL standard that devel-
opers need to be aware of, thus requiring further testing. For
example, SQLite allows NULL to be inserted for a primary
key in certain circumstances [18], while PostgreSQL forbids
this behavior. Most DBMSs do not constrain how many times
NULL can appear in a column designated as “UNIQUE”, even
though Microsoft SQL Server will only allow it to appear
once [19]. Migrating to different DBMS engines is a common
task in industry [20]. The use of a fast, lightweight DBMS
for development (e.g., SQLite) and the switch to a more
robust, enterprise DBMS for deployment (e.g., Postgres) is
also a common practice positively encouraged by the Django
framework [21] in use for Python-based web development at
major companies such as Instagram and Pinterest [22].

One important aspect of a database’s schema is the in-
tegrity constraints that defend and preserve the consistency
and coherency of data — for example, preventing duplicate
usernames and non-sensical values such as negative stock
levels and prices. Integrity constraints often form the last line
of defense against values that might compromise a database’s
contents, since the database itself may be accessed from a
number of applications that may themselves fail to properly
implement guards against malformed or incorrect values.

Like other software artefacts, integrity constraints are sub-
ject to errors of omission and commission [23]. An example of
an omission error is a developer forgetting to add a constraint
on a column, such as not defining a UNIQUE constraint on a
username column. Conversely, a commission error would be a
developer unintentionally adding an integrity constraint, such
as a UNIQUE constraint on a column representing somebody’s
first name (these mistakes may happen in combination, as
the unique constraint may have been intended for a column
representing some distinctly identifiable information, such as
an identification number). For these reasons, industry experts
recommend thorough testing of integrity constraints [1]–[3].

C. Testing Integrity Constraints in a Relational Schema

McMinn et al. defined a series of coverage criteria for test-
ing relational database schema integrity constraints [5]. These
criteria are based on the idea of testing integrity constraints
much like conditions in a program, that is, they are exercised
as true and false by the test suite. In practice, this means
designing test cases of SQL INSERT statements with data such
that an integrity constraint is satisfied (i.e., the DBMS admits
the data into the database) and violated (i.e., the DBMS rejects
the data and prevents it from being inserted into the database).
For instance, a test that satisfies a CHECK constraint would seek
to insert data that makes the predicate of the constraint true
and a test that seeks to violate the constraint would attempt to
insert values that make it false. A test that satisfies a NOT NULL

constraint would be an INSERT statement involving an actual
(non-NULL) value for the column with the constraint declared
on it. Conversely, a violating test would attempt to insert NULL.

CREATE TABLE cookies (

id INTEGER PRIMARY KEY NOT NULL,

name TEXT NOT NULL,

value TEXT,

expiry INTEGER,

last_accessed INTEGER,

creation_time INTEGER,

host TEXT,

path TEXT,

UNIQUE(name, host, path),

FOREIGN KEY(host, path) REFERENCES places(host, path),

CHECK (expiry = 0 OR expiry > last_accessed),

CHECK (last_accessed >= creation_time)

);

CREATE TABLE places (

host TEXT NOT NULL,

path TEXT NOT NULL,

title TEXT,

visit_count INTEGER,

fav_icon_url TEXT,

PRIMARY KEY(host, path)

);

(a) The BrowserCookies relational database schema

(i) AVM-D generated test case to satisfy the compound UNIQUE key

A-S1
INSERT INTO places(host, path, title, visit_count, fav_icon_url)
VALUES ('', '', '', 0, '')

A-S2
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)
VALUES (0, '', '', 0, 0, 0, '', '')

A-A1
INSERT INTO places(host, path, title,visit_count, fav_icon_url)
VALUES ('a', '', '', 0, '')

A-A2
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)
VALUES (1, '', '', 0, 0, 0, 'a', '')

(ii) DOMINO generated test case to violate the compound UNIQUE key

D-S1
INSERT INTO places(host, path, title, visit_count, fav_icon_url)
VALUES ('aqrd', 'xj', 'vnobtpvl', 0, 'dmnofpe')

D-S2
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)
VALUES (0, 'ddfvkxnjg', '', 0, -801, -890, 'aqrd', 'xj')

D-A1
INSERT INTO places(host, path, title,visit_count, fav_icon_url)
VALUES ('vkjdkfc', 'xxfp', 'tp', -640, 'mdewsfaw')

D-A2
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)
VALUES (261, 'ddfvkxnjg', 'euer', NULL, NULL, NULL, 'aqrd', 'xj')

(b) Automatically generated test cases using (i) AVM-D and (ii) DOMINO to test the compound
UNIQUE constraint on the columns name, host, and path. The test case generated by
AVM-D aims to satisfy the constraint, while the one generated by DOMINO violates it.

Fig. 1. The BrowserCookies relational database schema with examples of automatically generated test case data.

McMinn et al. described further, finer grained, coverage
criteria (e.g., “Clause-Based Active Integrity Constraint Cov-
erage”, or ClauseAICC for short) that test individual clauses
of CHECK constraints and the presence of certain columns for
the integrity constraints that can accommodate them [5]. In
experiments with mutation analysis, ClauseAICC was found to
be the coverage criterion most sensitive to schema faults when
combined with two other criteria, namely “Active Unique Col-
umn Coverage” (AUCC) and “Active Null Column Coverage”
(ANCC), which exercise the uniqueness of all columns in
a database and their NULL/not NULL status, respectively [5].
As such, it is this combination of coverage criteria that the
experiments in Section V use to generate the test suites.

D. Automatic Test Data Generation for Relational Schemas

SchemaAnalyst [24] is a tool for automatically generating
test cases to satisfy coverage criteria for integrity constraints.
SchemaAnalyst implements two state-of-the-art test generation
algorithms called AVM-D [5] and DOMINO [7]. Both of these
algorithms populate a sequence of INSERT statements with test
data designed to satisfy a test coverage requirement.

DOMINO works by initializing the test data to random
values and then adjusting those values to meet the test re-
quirement [7]. For example, if the test requirement involves
violating a primary key, two INSERT statements will be re-
quired with the same value for the primary key column. If
those values are different, DOMINO will overwrite one of the
values so that it matches the other. DOMINO performs similar
operations to generate test data for UNIQUE constraints, foreign
keys, and NOT NULL constraints. It attempts to satisfy/violate
CHECK constraints through pure random generation of values,
with the assistance of constant values mined from the schema.

AVM-D is a search-based method that is as a variant of
Korel’s Alternating Variable Method [25]–[27]. In contrast
to DOMINO, it initializes data to pre-defined default values
(e.g., zero for integers and empty strings for text fields). It
then uses a fitness function to generate values to meet a
coverage requirement using traditional search-based distance

metrics [28]. For example, if two values x and y are required
to be the same (e.g., to violate a uniqueness property), the
distance metric is f = |x − y|, where smaller values of f
denote closeness to the required test data, with zero indicating
that the search has found identical values of x and y.

Figure 1b shows examples of test cases generated by
AVM-D (part b(i)) and DOMINO (part b(ii)). The test require-
ment for the AVM-D test case is to satisfy the UNIQUE con-
straint of the schema involving name, host, and path, while
the goal of DOMINO’s requirement is to violate it. This figure
shows how the test data generated by AVM-D contain repeated
“default” values that did not need to be manipulated to meet
the test requirement, while DOMINO’s test data is varied and
random. For each test, assuming an initially empty cookies

table, “setup” INSERT statements (*-S1 and *-S2) are needed to
put the database into the required state for testing the constraint
— since uniqueness cannot be tested unless there is already
some data in the database for comparison purposes.

In both cases, the S2-suffixed statement inserts data for the
cookies table, but since it has a foreign key to places, a
prior INSERT (*-S1) must first be made to that table. This
is so that the test does not fail before the UNIQUE constraint
can be tested, as violation of the foreign key is not the focus
of these particular tests. Following these “setup” INSERTs are
statements referred to as the “action” INSERTs, since they
perform the actual test (*-A2) — or support it through ensuring
that the foreign key relationship to the places table can be
maintained (*-A1). A-A2 inserts a different combination of
values for name, host, and path to A-S2, ensuring that the
integrity constraint is satisfied, while D-A2 inserts the same
values as D-S2, so that the constraint is ultimately violated.

The coverage criteria for testing integrity constraints ne-
cessitate the coverage of many test requirements. Although
SchemaAnalyst automates the process of generating test cases
to satisfy those test requirements, the resultant test suites
can still be lengthy, often manipulating database state in an
intertwined fashion. This paper investigates ways to reduce
the size of these test suites while maintaining their coverage.

r1 r2 r3 r4 r5 r6

t1 X X X
t2 X X
t3 X X
t4 X X
t5 X

T1 T2 T3 T4 T5 T6

Fig. 2. Example of test cases {t1, . . . , t5} and test requirements
{r1, . . . , r6}, an input for test suite reduction methods (excerpted from [29]).

E. Traditional Test Suite Reduction

The task of producing a reduced test suite is equivalent to
the minimal set cover problem, which is NP-complete [30].
However, several techniques are capable of effectively reduc-
ing test suite size in a way that is useful to developers. We
now introduce three such techniques that are implemented as
baselines to which, in Section V, we compare the presented
approach for reducing relational database schema test suites.
We do this by way of the example in Figure 2, which
shows a test suite with five test cases {t1 . . . t5} and five test
requirements {r1 . . . r6}, where the test cases have different,
yet overlapping, coverage of the test requirements.

Random is a technique that is often effective at reducing test
suites [31]. This reduction method starts with an empty test
suite, adding test cases from the original test suite so long as
they cover new test requirements, and continuing until all test
requirements are covered. Greedy test suite reduction works
in a similar loop to produce a smaller test suite, but instead of
selecting test cases at random from the original test suite, it
selects the next previously unconsidered test case that covers
the most uncovered test requirements [31]. In the example
from Figure 2, Greedy selects t1 first. Since the remaining
test cases all cover one remaining requirement, this reduction
method will select them at random until all requirements are
covered, yielding a reduced test suite of four test cases.

Another well-known approach, called HGS, was developed
by Harrold, Gupta, and Soffa [13]. It works by creating test
suites containing test cases that cover each test requirement —
T1 = {t1, t2}, covering r1; T2 = {t1, t3} covering r2, up to
T6 = {t4}, covering r6. HGS starts by adds test cases to the
reduced test suite from the test suites T1 . . . Tn with cardinality
1. In the example, test suites with cardinality 1 are T4 and T6,
involving test cases t2 and t4, which result in the coverage
of {r1, r4} and {r3, r6}, respectively. HGS then “marks” test
suites that also cover these requirements (i.e., T1 and T3) so
they are not considered by further steps of the algorithm. HGS
then repeatedly selects the test cases in unmarked test suites
of increasing cardinality. In the example, unmarked test suites
of cardinality 2 are T2 and T5, with t3 the only test case to
occur in both, and thus added to the reduced test suite. Since
t3 covers r2 and r5, all test requirements are now covered, and
the algorithm terminates with the reduced test suite containing
three tests — one fewer than Greedy. HGS avoids selecting
t1, which is challenging for Greedy, thus leading to Greedy
being less successful than HGS at reducing this example test
suite. Since HGS has been extended, the interested reader is
referred to Yoo and Harman’s survey [31] for more details; in
this paper we only consider the original HGS algorithm.

III. THE STICCER APPROACH

The more fault-finding and powerful a coverage criteria
is, the more test requirements it involves, and the test suites
needed to satisfy all of the those test requirements become
larger as a result [23]. For example, the BrowserCookies
schema in Figure 1a has ten integrity constraints. A basic
coverage criterion that simply satisfies and violates each con-
straint would therefore have 20 test requirements, The more
complex combination of ClauseAICC, ANCC and AUCC,
with higher fault revealing power [5], has 71 requirements.
Although SchemaAnalyst automates the generation of tests, the
test suites can become large since there are many requirements
to satisfy. This happens because, unless a test requirement is
a duplicate or subsumed by some other, SchemaAnalyst treats
it as a separate “target” during test case generation [6].

As explained in the last section, and as seen in Figure 1,
each test incurs a setup “cost” from running the INSERTs that
get the database into some state needed to exercise the test
requirement. For instance, in Figure 1, the database needs to
have some data in it for the UNIQUE constraint to be properly
tested, as otherwise there will be nothing in the database to test
the “uniqueness” of the inserted data forming the last INSERT
statement of the test. Since the table of interest involves a
foreign key, data must also be added to the referenced table
to ensure that the test does not fail for reasons other than the
UNIQUE constraint that it is supposed to test. Furthermore, the
database state must be reset following each test so that it does
not “pollute” any following tests and introduce unintended
behavior or flakiness that might compromise testing [32].

The first observation we make, therefore, is that integrity
constraint tests often share common sequences of setup-
focused INSERT statements that could be shared across dif-
ferent test cases to reduce setup/teardown time when running
the test suite, resulting in fewer overall INSERT statements for
a human to understand when maintaining the test suite. For
example, Figure 3 shows two test cases, t1 and t2, designed to
test the inclusion of the two columns of a compound primary
key belonging to the places table of the BrowserCookies
schema in Figure 1. The first, t1, tests the uniqueness of
the host column while t2 tests the uniqueness of the path

column. As the figure shows, the setup part of t2 can be thrown
away (statement t2S1), with the “action” part (statement t2A1)
appended to the end of t1. The new, merged test case covers
both test requirements of the original two tests.

The second observation we make is that some INSERT state-
ments pertaining to foreign keys in a test case are redundant
and can be removed, as in the example of Figure 1b(ii) and the
test case generated by DOMINO. Here, the test requirement is
to violate the UNIQUE constraint of the schema. This involves
two INSERT statements to the cookies table (D-S2 and D-A2),
with the second INSERT (D-A2) replicating the data values for
the columns involved in the constraint of the first (D-S2), so
that they clash with those already in the database. Because
the cookies has a foreign key to the places table, the test
case involves INSERT statements to that table also (D-S1

Test Case 1 (t1)
host path title visit_count fav_icon_url

t1S1 'A' 'B' 'C' 0 'D' 3
t1A1 'A' 'Y' 'T' 0 'L' 3

Test Case 2 (t2)
host path title visit_count fav_icon_url

t2S1 'A' 'Y' 'X' 0 NULL 3

t2A1 'X' 'Y' 'T' 1 'L' 3

Merged Test Case
host path title visit_count fav_icon_url

t1S1 'A' 'B' 'C' 0 'D' 3
t1A1 'A' 'Y' 'T' 0 'L' 3

t2A1 'X' 'Y' 'T' 1 'L' 3

Merge

Fig. 3. An example of how STICCER merges two test cases t1 and t2 into
one test case with the same test coverage behavior. The test cases involve
the places table of the BrowserCookies schema of Figure 1 and aim to
satisfy the primary key of the table by exercising the uniqueness of different
columns (t1, the path column; t2, the host column). The checkmarks
indicate whether a row of data (wrapped into INSERT statements in the fully
elaborated set of test cases) is successfully admitted into the database.

and D-A1) — one to support each INSERT to cookies. This
is to ensure that data is present to satisfy the foreign key
relationship (since violating this constraint would mean that
the test requirement for this test would not be fulfilled). Yet,
in this particular case D-A1 is redundant. Since the columns
of the UNIQUE constraint are also involved in the foreign key,
and both INSERT statements to cookies must have the same
data for those columns, those INSERT statements both rely on
D-S1 to fulfil the foreign key relationship. Note that this is
not always the case, since the corresponding INSERT to the
places table is needed for the AVM-D test case in part b(i),
as the test requirement there is to satisfy the unique constraint,
and as such D-S2 and D-A2 need to be distinct, which in turn
means that the foreign key values must also be distinct.

To handle both of these issues as part of an automated
approach to reduce the size of relational database schema
integrity constraint tests, we present a technique called “STIC-
CER”, which stands for “Schema Test Integrity Constraints
Combination for Efficient Reduction”. STICCER builds on the
standard greedy approach to test suite reduction by merging
tests (or “sticking” them together) — thereby sharing setup
statements (and the associated teardown costs following the
test) — and by also removing redundant INSERT statements.

The overall algorithm for STICCER works as follows.
The first step removes redundant INSERT statements from the
existing set of test cases, through a function we refer to
as REMOVEREDUNDANTINSERTS. This function checks all
INSERT statements made to foreign key tables, and ensures that
the foreign keys are actually referenced by other INSERTs in
the test. If they are not, those INSERT statements are redundant,
and therefore are cut out of the test case under consideration.

STICCER then performs a greedy reduction on the test
suite, before moving into the test case merging stage. STIC-
CER iterates through the test suite comparing each test t1 with
each other test t2. STICCER then checks for a potential merge
through a function called CHECKMERGE. The primary role of
CHECKMERGE is to assess if the proposed test for merging

will cover the same test requirements as the original two tests.
If the first test, t1, leaves the database state in such a way that
the behavior of the “action” INSERT statements (i.e., t2A1 in
the example of Figure 3) will behave differently after merging
(i.e., the merged test does not cover the same test requirements
as t1 and t2 combined), CHECKMERGE will reject the potential
merge. STICCER continues iterating through the test suite,
checking the remaining tests with the newly created test case
for further merge possibilities. To better ensure that STICCER
does not produce overly long, unwieldy tests that are difficult
to understand and maintain, CHECKMERGE will only merge
tests if the following, further conditions are met:

1. The coverage requirements involve the same database table.
CHECKMERGE will not merge two tests if they are designed
to test integrity constraints belonging to different tables. Each
test must focus on the integrity constraints of one table only.

2. The tests are intended to both satisfy or both violate aspects
of the schema. To simplify the intentions of each test, and make
it easier to maintain and understand, each merged test will only
attempt to satisfy or to violate the integrity constraints of a
particular table in the schema. Under this condition, the human
tester/maintainer knows what type of behavior to expect from
the INSERT statements of each of the final tests — that is,
whether the data in them is intended to be accepted by the
DBMS, or whether they are all supposed to be rejected.

3. The tests both involve database setup, or they both do not.
Some tests do not involve any database setup at all (e.g., CHECK
constraints, where the predicate is only concerned with the
current row of data, rather than the state of the database), and
these tests should not be merged together with those that do.

If CHECKMERGE permits a merge of tests, a function called
MERGE then actually performs the merge, removing the setup
INSERT statements from t2, and appending it to the end of t1.
This test may undergo further merges with other tests in the
suite as they are considered in turn by STICCER.

We implemented STICCER into SchemaAnalyst, which has
functionality to statically analyze what test requirements are
covered by a test case [24], and we made use of this to check
merged tests when implementing the presented technique.
Also, we integrated the Random, Greedy, and HGS reduction
techniques into SchemaAnalyst, making the complete system
available at https://github.com/schemaanalyst/schemaanalyst.

IV. EMPIRICAL EVALUATION

This section evaluates STICCER by comparing it to other
test suite reduction techniques in an empirical study that seeks
to answer the following three research questions:

RQ1: Reduction Effectiveness. How effective is STICCER
at reducing the number of test cases and INSERTs within each
test case, compared to other test suite reduction techniques,
while preserving the test requirements of the original suite?

RQ2: Impact on Fault Finding Capability. How is the fault-
finding capability of the test suites affected following the use
of STICCER and other test suite reduction techniques?

RQ3: Impact on Test Suite and Mutation Analysis Run-
time. How are the running times of the reduced test suites and
subsequent mutation analysis affected by test suite reduction?

A. Methodology

1) Schema Subjects: We performed our experiment on a di-
verse set of 34 schemas listed by Table I, which have featured
in previous research on schema testing [5]–[7], [12], and are
drawn from several sources, including open-source programs
(e.g., JWhoisServer, MozillaExtensions, and WordNet), gov-
ernment projects (e.g., IsoFlav R2, NistDML181, and Usda),
and examples from websites (e.g., DellStore, FrenchTowns
and Iso3166). The set of relational schemas varies in both
size and complexity, with schemas ranging from having 1–42
tables, 3–309 columns, and 1–134 constraints. In particular,
all types of integrity constraint are represented in this set
of schemas, including those with compound primary keys,
UNIQUE constraints and foreign keys, and CHECK constraints.

2) Experiments: To study STICCER, we generated test
suites using the AVM-D and DOMINO test generation algo-
rithms (introduced in Section II-D) for the 34 schemas using
the ClauseAICC+ANCC+AUCC coverage criterion combina-
tion (introduced in Section II-C as the coverage criterion
found to have the strong fault-finding capability in previous
work [5]). We used the implementations of these techniques
found in the publicly available SchemaAnalyst tool (introduced
in Section II-D), and configured SchemaAnalyst to generate the
test suites with the well-known SQLite as the target DBMS.
Due to the stochastic nature of AVM-D and DOMINO, we
repeated the generation of the test suites 30 times. We set
SchemaAnalyst to use a maximum of 100,000 iterations for
the test data search for each test requirement.

To answer RQ1 we compare STICCER at reducing the
test suites generated by SchemaAnalyst with implementa-
tions of the Random, Greedy, and HGS methods (intro-
duced in Section II-E). To ensure fairness of comparison
with STICCER, our implementations of these techniques also
removed redundant INSERT statements from test suites (using
the REMOVEREDUNDANTINSERTS function discussed in Sec-
tion IV-A). We calculated the effectiveness of reduction for
the test suite size and number of INSERTs using Equation 1.

(1− No. of test cases in the reduced test suite
No. of test cases in the original test suite

)× 100 (1)

We report the median values of this equation for each
reduction method for the 30 test suites generated for each
schema with the two test generation methods, and calculate
statistical significance and effect sizes as detailed in the next
subsection. We also report the number of merges STICCER
could perform while reducing the test suites created by the two
different test generation techniques, AVM-D and DOMINO.

To answer RQ2, we investigate the fault-finding capability
of the reduced test suites using mutation analysis. We used
the mutation analysis techniques implemented into Schema-
Analyst, which adopt Wright et al.’s [33] mutation operators
for integrity constraints. These operators add, remove, and

TABLE I
THE RELATIONAL DATABASE SCHEMAS STUDIED

Integrity Constraints

Schema Tables Columns Check Foreign Key Not Null Primary Key Unique Total

ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
IsoFlav R2 6 40 0 0 0 0 5 5
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
WordNet 8 29 0 0 22 8 1 31

Total 186 1044 38 49 357 122 24 590

exchange columns in primary key, unique, and foreign key
constraints, invert NOT NULL constraints, remove CHECK con-
straints and mutate their relational operators. We calculated
the mutation score for each reduced test suite, a percentage of
mutants that are “killed” (i.e., detected) by the tests.

To answer RQ3, we tracked the times needed by each
reduction algorithm to reduce test suites, and the time needed
to perform mutation analysis using the reduced suites.

We performed all experiments on a Linux workstation
running Ubuntu 14.04 with a 3.13.0–44 GNU/Linux 64-bit
kernel, quad-core 2.4GHz CPU, and 12GB of RAM. We used
SQLite version 3.8.2 with “in-memory” mode enabled.

B. Statistical Analysis

Because the presented techniques are stochastic, and since
recording the wall-clock timings for the experiments is po-
tentially subject to interferences that we cannot control (e.g.,
operating system interrupts), we repeated our experiments 30
times. As we cannot make any assumptions about the nor-
mality of the resulting distributions, we apply non-parametric
statistical measures, including the Mann-Whitney U-test and
the Â effect size metric of Vargha and Delaney [34], as recom-
mended by Arcuri and Briand in their guide to statistics and
software engineering experiments [35]. In our tables we report
if a technique was statistically better or worse to some other
by formatting the statistics for those techniques in bold, using
the “H” symbol if the secondary technique was significantly
worse and the “N” symbol if it was significantly better, and
an asterisk if the effect size was large (i.e., Â < 0.29 or
> 0.71), following the suggested cut-offs from Vargha and
Delaney [34]. Supporting the replication of our analyses, we
performed these calculations using the R language for statis-
tical computation, making the scripts and raw data publicly
available at https://github.com/schemaanalyst/sticcer-replicate.

WordNet
Usda

UnixUsage
StudentResidence

StackOverflow
RiskIt

Products
Person

NistXTS749
NistXTS748
NistWeather
NistDML183
NistDML182
NistDML181

MozillaPermissions
MozillaExtensions

JWhoisServer
iTrust

IsoFlav_R2
Iso3166

Inventory
FrenchTowns

Flights
Examination

Employee
DellStore

CustomerOrder
CoffeeOrders

Cloc
BrowserCookies

BookTown
BankAccount

ArtistTerm
ArtistSimilarity

4 32 256

Number of Merges (log2)

Test Data
Generators

AVM−D

DOMINO

Fig. 4. Median number of test case merges made by STICCER (log2 scale)

C. Threats to Validity

Our empirical study used a diverse set of schemas taken
from past studies [5], [7], [36], [37]. While these schemas
support the claims we make in the following sections, it is
impossible to claim that they are representative of all schemas,
and obtaining such a suitably representative set is equally dif-
ficult. However, our set of schemas are derived from a variety
of sources, with a broad range of sizes and complexities. Other
validity threats include the stochastic behavior of the test data
generators (and the possibility our results are obtained by
chance and are thus unrepresentative) and the use of wall-
clock timings, which are subject to interferences that are out
of our control. To mitigate both of these issues, we repeated
the experiments 30 times, following the advice of Arcuri and
Briand [35] to mitigate errors in the statistical analysis of our
results, for example by using non-parametric hypothesis tests.

We implemented these analyses in R, using unit tests to gain
confidence in their correctness. Finally, we controlled threats
arising from defects in our implementation of STICCER and
the reduction techniques by checking the results on selected
schemas and, where appropriate, by writing unit tests. For
instance, since the presented methods aim to reduce test
suites while maintaining test coverage, we confirmed that all
reduction was achieved without lowering the test coverage.

V. EXPERIMENTAL RESULTS

RQ1: Reduction Effectiveness

Figure 4 shows the median number of test case merges
that STICCER made with tests generated by either AVM-D or
DOMINO. The highest count is 539 merges for iTrust, with test
suites generated by DOMINO. The iTrust schema is the largest
we studied (see Table I), with the greatest number of integrity
constraints (134). The schema with the next greatest number of
merges is BookTown, with 70 merges, for test suites generated
by DOMINO. BookTown’s original test suite size is 269. The
smallest number of merges was 2 for Person, for test suites

generated by AVM-D, which has an original test suite size of
20. Figure 4 shows the distribution of merge opportunities that
were unavailable to the other, traditional reduction techniques
we applied to database schema test suites, which only remove
test cases on the basis of overlapping coverage requirements.

Table II shows the median effectiveness of each of the
reduction techniques at decreasing the number of test cases for
each schema in each of the 30 test suites generated by AVM-D
and DOMINO respectively. Table III shows the effectiveness
of each reduction technique at reducing the overall number of
SQL statements (i.e., INSERTs) in those reduced suites.

As the summary statistics show, STICCER was the most
effective at reducing the test suites, achieving up to a 93%
reduction for the StackOverflow schema and a minimum 37%
for JWhoisServer for tests generated by AVM-D. With tests
generated by DOMINO, STICCER achieved a maximum re-
duction of 89% with NistDML182 and a minimum of 58% for
Iso3166. It is worth noting that this minimum figure is greater
than the maximum achievable with Random for DOMINO-
produced test suites and only 6% lower than the maximums
achieved by Greedy and HGS, respectively. STICCER created
reduced test suites that were statistically significantly smaller
than the original test suites and those reduced by the other
methods for all database schemas and with a large effect size.

Table III shows that the reduction in test cases achieved
by STICCER was not the result of it naively concatenating
SQL statements from each constituent test case — STICCER
also reduced the number of overall INSERT statements in the
resulting test suites. As Table III shows, the average reduction
in the number of INSERTs (i.e., the constituent statements
making up each test case) that STICCER achieved was greater
than that of any of the other three reduction techniques studied.

On average, STICCER is more effective with test suites
generated by DOMINO than AVM-D, a fact also shown by
Figure 4. This is because the default values used by AVM-D
are repeated across INSERT statements, which makes it more
difficult to merge them together across different test cases.
The repeated values inadvertently trigger primary key and
UNIQUE constraint violations when the same values appear
for different INSERT statements from different test cases for
particular columns. This results in a combined test case with
different coverage requirements compared to its constituent
originals — test cases that will be disregarded by STICCER.

Comparing the average of the median reduction scores
for each schema, HGS is the next most effective reduction
technique following STICCER. Notably, STICCER achieves
an average reduction of 66% and 74% for test suites generated
by AVM-D and DOMINO, respectively, while HGS achieves
comparatively lower scores of 46% and 50%. HGS also
performed worse overall with test suites generated by AVM-D
compared to DOMINO, but the differences we observed were
not as marked as those with STICCER. It seems that DOMINO
is capable of producing test cases that cover more distinct sets
of requirements than AVM-D, and with less of an intersection
with other tests, thereby making them more amenable for
reduction techniques that aim to remove redundant test cases.

TABLE II
MEDIAN REDUCTION EFFECTIVENESS FOR TEST SUITES

Test suite reduction effectiveness is calculated using the higher–is-better formula of Equation 1. The “H” symbol indicates that a technique’s reduction score was significantly less
than STICCER’s, while “N” indicates that it was significantly greater. The “∗” symbol denotes a large effect size for a technique when compared with STICCER. The numbers in
brackets denote the median number of test cases in the reduced suites as a fraction of those in the original, unreduced test suite generated by either AVM-D or DOMINO.

AVM-D DOMINO

Schema STICCER Random Greedy HGS STICCER Random Greedy HGS

ArtistSimilarity 63% (7/19) ∗H32% (13/19) ∗H32% (13/19) ∗H42% (11/19) 63% (7/19) ∗H32% (13/19) ∗H37% (12/19) ∗H32% (13/19)
ArtistTerm 65% (15/43) ∗H28% (31/43) ∗H30% (30/43) ∗H37% (27/43) 65% (15/43) ∗H28% (31/43) ∗H30% (30/43) ∗H30% (30/43)
BankAccount 68% (12/37) ∗H35% (24/37) ∗H38% (23/37) ∗H43% (21/37) 70% (11/37) ∗H38% (23/37) ∗H43% (21/37) ∗H49% (19/37)
BookTown 58% (113/269) ∗H35% (175/269) ∗H38% (167/269) ∗H46% (144/269) 68% (87/269) ∗H37% (168/269) ∗H42% (156/269) ∗H49% (138/269)
BrowserCookies 62% (27/71) ∗H51% (35/71) ∗H56% (31/71) ∗H59% (29/71) 76% (17/71) ∗H46% (38/71) ∗H55% (32/71) ∗H56% (31/71)
Cloc 90% (4/40) ∗H43% (23/40) ∗H48% (21/40) ∗H50% (20/40) 85% (6/40) ∗H48% (21/40) ∗H51% (20/40) ∗H57% (17/40)
CoffeeOrders 64% (32/90) ∗H37% (57/90) ∗H41% (53/90) ∗H42% (52/90) 74% (23/90) ∗H39% (55/90) ∗H44% (50/90) ∗H47% (48/90)
CustomerOrder 40% (76/126) ∗H32% (86/126) ∗H33% (84/126) ∗H37% (79/126) 63% (46/126) ∗H33% (85/126) ∗H35% (82/126) ∗H39% (77/126)
DellStore 86% (24/177) ∗H33% (118/177) ∗H35% (115/177) ∗H38% (110/177) 71% (52/177) ∗H36% (113/177) ∗H41% (105/177) ∗H42% (102/177)
Employee 74% (10/38) ∗H46% (20/38) ∗H50% (19/38) ∗H50% (19/38) 80% (8/38) ∗H53% (18/38) ∗H61% (15/38) ∗H61% (15/38)
Examination 72% (30/107) ∗H50% (54/107) ∗H51% (52/107) ∗H52% (51/107) 87% (14/107) ∗H57% (46/107) ∗H64% (38/107) ∗H64% (38/107)
Flights 69% (19/62) ∗H49% (32/62) ∗H58% (26/62) ∗H58% (26/62) 71% (18/62) ∗H45% (34/62) ∗H52% (30/62) ∗H53% (29/62)
FrenchTowns 40% (32/53) ∗H32% (36/53) ∗H36% (34/53) ∗H34% (35/53) 60% (21/53) ∗H32% (36/53) ∗H32% (36/53) ∗H34% (35/53)
Inventory 67% (6/18) ∗H33% (12/18) ∗H39% (11/18) ∗H44% (10/18) 78% (4/18) ∗H44% (10/18) ∗H56% (8/18) ∗H56% (8/18)
IsoFlav R2 75% (45/177) ∗H45% (96/177) ∗H49% (90/177) ∗H50% (88/177) 81% (34/177) ∗H52% (85/177) ∗H60% (70/177) ∗H62% (66/177)
Iso3166 58% (5/12) ∗H25% (9/12) ∗H33% (8/12) ∗H33% (8/12) 58% (5/12) ∗H29% (8/12) ∗H33% (8/12) ∗H42% (7/12)
iTrust 57% (646/1517) ∗H38% (934/1517) ∗H43% (872/1517) ∗H44% (847/1517) 85% (235/1517) ∗H44% (849/1517) ∗H49% (776/1517) ∗H50% (754/1517)
JWhoisServer 37% (100/158) ∗H31% (109/158) ∗H33% (106/158) ∗H35% (103/158) 70% (48/158) ∗H32% (107/158) ∗H35% (103/158) ∗H37% (99/158)
MozillaExtensions 75% (57/229) ∗H51% (112/229) ∗H60% (92/229) ∗H50% (115/229) 85% (35/229) ∗H55% (102/229) ∗H63% (84/229) ∗H64% (83/229)
MozillaPermissions 73% (9/33) ∗H42% (19/33) ∗H48% (17/33) ∗H48% (17/33) 88% (4/33) ∗H55% (15/33) ∗H58% (14/33) ∗H64% (12/33)
NistDML181 79% (8/38) ∗H47% (20/38) ∗H53% (18/38) ∗H53% (18/38) 76% (9/38) ∗H45% (21/38) ∗H55% (17/38) ∗H58% (16/38)
NistDML182 89% (20/190) ∗H53% (90/190) ∗H57% (82/190) ∗H57% (81/190) 89% (21/190) ∗H52% (90/190) ∗H60% (76/190) ∗H62% (73/190)
NistDML183 82% (6/34) ∗H44% (19/34) ∗H47% (18/34) ∗H53% (16/34) 76% (8/34) ∗H41% (20/34) ∗H50% (17/34) ∗H53% (16/34)
NistWeather 64% (20/56) ∗H39% (34/56) ∗H45% (31/56) ∗H43% (32/56) 82% (10/56) ∗H39% (34/56) ∗H45% (31/56) ∗H46% (30/56)
NistXTS748 62% (6/16) ∗H34% (10/16) ∗H38% (10/16) ∗H44% (9/16) 69% (5/16) ∗H41% (10/16) ∗H50% (8/16) ∗H50% (8/16)
NistXTS749 57% (15/35) ∗H43% (20/35) ∗H46% (19/35) ∗H51% (17/35) 69% (11/35) ∗H40% (21/35) ∗H49% (18/35) ∗H49% (18/35)
Person 50% (10/20) ∗H30% (14/20) ∗H40% (12/20) ∗H40% (12/20) 80% (4/20) ∗H30% (14/20) ∗H30% (14/20) ∗H35% (13/20)
Products 67% (17/52) ∗H40% (31/52) ∗H44% (29/52) ∗H48% (27/52) 69% (16/52) ∗H38% (32/52) ∗H44% (29/52) ∗H46% (28/52)
RiskIt 51% (122/250) ∗H41% (148/250) ∗H43% (142/250) ∗H48% (130/250) 63% (92/250) ∗H44% (140/250) ∗H48% (129/250) ∗H52% (120/250)
StackOverflow 93% (12/171) ∗H46% (92/171) ∗H48% (89/171) ∗H50% (86/171) 84% (28/171) ∗H53% (80/171) ∗H60% (68/171) ∗H60% (68/171)
StudentResidence 62% (13/34) ∗H38% (21/34) ∗H41% (20/34) ∗H44% (19/34) 74% (9/34) ∗H41% (20/34) ∗H47% (18/34) ∗H47% (18/34)
UnixUsage 52% (70/147) ∗H41% (86/147) ∗H43% (84/147) ∗H47% (78/147) 73% (40/147) ∗H44% (83/147) ∗H48% (76/147) ∗H50% (73/147)
Usda 88% (30/247) ∗H39% (152/247) ∗H40% (147/247) ∗H44% (139/247) 78% (54/247) ∗H44% (139/247) ∗H49% (125/247) ∗H51% (121/247)
WordNet 58% (50/118) ∗H36% (76/118) ∗H42% (69/118) ∗H44% (66/118) 64% (43/118) ∗H35% (77/118) ∗H40% (71/118) ∗H44% (66/118)

Minimum 37% 25% 30% 33% 58% 28% 30% 30%
Average 66% 39% 43% 46% 74% 42% 48% 50%
Maximum 93% 53% 60% 59% 89% 57% 64% 64%

Greedy was the third best performer, achieving marginally
less reduction in overall test suite size than HGS. As expected,
the baseline Random technique was the worst performer.

In conclusion for RQ1, STICCER is the most effective at
reducing the number of test cases and the overall number of
INSERT statements in a test suite. Importantly, STICCER does
this while preserving the coverage of the original test suite.

RQ2: Impact on Fault Finding Capability

Table IV shows the median mutation scores for all the re-
duction and test generation techniques where a difference was
recorded for one of the reduction techniques with respect to
the original test suite (OTS). Perhaps surprisingly, differences
were only observed for one of the reduction techniques and
eight of the 34 schemas — for the rest, the same mutation
score was recorded. For each of these schemas, differences
were only experienced with test suites generated by AVM-D.

For test suites generated by AVM-D, STICCER’s reduced
test suites had a mutation score significantly worse than the
OTS for five schemas. Although statistically significant, the
difference does not register to the first decimal point for two
schemas (i.e., BrowserCookies and iTrust) and the difference
is at most 3.2% for NistWeather. Random and Greedy were
also significantly worse for five schemas with AVM-D’s tests.
Greedy performed almost identically to STICCER. Given that
STICCER performs greedy reduction as one of its initial steps,
this points to the loss of fault detection capability being down
to test cases that were removed as duplicate due to their
coverage of test requirements, rather than test merging. Finally,

HGS was statistically significantly worse compared to the OTS
for the highest number of schemas, namely eight in total.

In all cases, DOMINO-generated suites are more robust to
the reduction, likely because of the diversity of test values
that it generates. Conversely, the re-use of “default” values for
AVM-D means that the loss of test cases and INSERTs through
reduction results in a small loss of fault-finding capability.
In conclusion for RQ2, mutation scores of test suites were
more or less preserved following reduction. While some test
suites experienced a drop in mutation score, the difference
was not substantial (3.2% maximum). Test suites generated
by DOMINO did not experience any loss of mutation score
following the application of any of the reduction techniques.
RQ3: Impact on Test Suite and Mutation Analysis Runtime

Table V shows the median time for performing reduction
with STICCER and mutation analysis with the resulting test
suites, compared to performing mutation analysis with just
the OTS. In general, STICCER is capable of substantial time
savings for large schemas with large numbers of integrity
constraints and test requirements. The largest saving is for
the largest schema, iTrust, with a saving of approximately 16
minutes. Savings of 20 seconds are possible with BookTown
and RiskIt. For the smallest five schemas by the number
of columns, STICCER performed statistically worse. Yet, in
practice the difference is negligible and always under a second.

Table VI compares STICCER with the other reduction tech-
niques. The results show that STICCER’s test suites generated
with DOMINO ran significantly faster than all reduced test
suite by other techniques. STICCER was over 2.5 times faster

TABLE III
MEDIAN REDUCTION EFFECTIVENESS FOR SQL INSERT STATEMENTS IN REDUCED TEST SUITES

Test suite reduction effectiveness is calculated as in the higher–is-better formula of Equation 1. The “H” symbol indicates that a technique’s reduction score was significantly less
than STICCER, while “N” indicates that it was significantly higher. The “∗” symbol denotes a large effect size for a technique when compared with STICCER. The numbers in
brackets denote the median number of INSERT statements in reduced suites as a fraction of those in the original, unreduced test suite generated by either AVM-D or DOMINO.

AVM-D DOMINO

Schema STICCER Random Greedy HGS STICCER Random Greedy HGS

ArtistSimilarity 48% (23/44) ∗H34% (29/44) ∗H34% (29/44) ∗H45% (24/44) 50% (22/44) ∗H32% (30/44) ∗H39% (27/44) ∗H35% (28/44)
ArtistTerm 56% (54/124) ∗H34% (82/124) ∗H36% (79/124) ∗H45% (68/124) 56% (54/124) ∗H33% (84/124) ∗H36% (79/124) ∗H36% (79/124)
BankAccount 56% (35/80) ∗H36% (52/80) ∗H38% (50/80) ∗H44% (45/80) 57% (34/80) ∗H39% (49/80) ∗H44% (44/80) ∗H50% (40/80)
BookTown 44% (225/403) ∗H35% (262/403) ∗H38% (250/403) ∗N47% (215/403) 49% (206/403) ∗H37% (254/403) ∗H42% (233/403) ∗H48% (208/403)
BrowserCookies 64% (63/175) ∗H56% (77/175) ∗H62% (66/175) ∗H64% (63/175) 69% (55/175) ∗H50% (87/175) ∗H59% (71/175) ∗H60% (70/175)
Cloc 62% (23/60) ∗H42% (35/60) ∗H48% (31/60) ∗H50% (30/60) 61% (24/60) ∗H45% (33/60) ∗H48% (31/60) ∗H55% (27/60)
CoffeeOrders 61% (107/273) ∗H41% (162/273) ∗H45% (149/273) ∗H48% (143/273) 65% (96/273) ∗H43% (156/273) ∗H49% (139/273) ∗H51% (132/273)
CustomerOrder 39% (290/475) ∗H33% (317/475) ∗H36% (305/475) ∗N39% (288/475) 56% (208/475) ∗H35% (310/475) ∗H36% (302/475) ∗H41% (279/475)
DellStore 56% (123/281) ∗H37% (177/281) ∗H39% (172/281) ∗H42% (162/281) 50% (141/281) ∗H40% (169/281) ∗H44% (156/281) ∗H47% (150/281)
Employee 60% (21/53) ∗H42% (30/53) ∗H47% (28/53) ∗H47% (28/53) 62% (20/53) ∗H49% (27/53) ∗H57% (23/53) ∗H57% (23/53)
Examination 66% (78/229) ∗H49% (118/229) ∗H50% (114/229) ∗H52% (111/229) 74% (60/229) ∗H55% (102/229) ∗H63% (86/229) ∗H64% (83/229)
Flights 70% (41/137) ∗H57% (59/137) ∗H66% (46/137) ∗H66% (46/137) 58% (58/137) ∗H47% (73/137) ∗H55% (62/137) ∗H55% (62/137)
FrenchTowns 50% (81/161) ∗H41% (95/161) ∗H47% (86/161) ∗H43% (91/161) 52% (77/161) ∗H40% (97/161) ∗H40% (96/161) ∗H43% (92/161)
Inventory 54% (13/28) ∗H32% (19/28) ∗H39% (17/28) ∗H43% (16/28) 57% (12/28) ∗H43% (16/28) ∗H54% (13/28) 54% (13/28)
IsoFlav R2 62% (104/274) ∗H46% (148/274) ∗H50% (136/274) ∗H50% (136/274) 64% (100/274) ∗H49% (138/274) ∗H58% (116/274) ∗H59% (111/274)
Iso3166 47% (10/19) ∗H26% (14/19) ∗H37% (12/19) ∗H37% (12/19) 42% (11/19) ∗H32% (13/19) ∗H37% (12/19) 47% (10/19)
iTrust 56% (978/2204) ∗H43% (1261/2204) ∗H48% (1142/2204) ∗H50% (1103/2204) 57% (940/2204) ∗H45% (1212/2204) ∗H50% (1101/2204) ∗H52% (1064/2204)
JWhoisServer 38% (158/256) ∗H36% (163/256) 38% (158/256) ∗N40% (153/256) 47% (136/256) ∗H38% (159/256) ∗H41% (152/256) ∗H43% (145/256)
MozillaExtensions 71% (105/356) ∗H53% (168/356) ∗H63% (130/356) ∗H50% (179/356) 69% (110/356) ∗H52% (170/356) ∗H60% (144/356) ∗H61% (140/356)
MozillaPermissions 62% (19/50) ∗H42% (29/50) ∗H48% (26/50) ∗H48% (26/50) 66% (17/50) ∗H51% (24/50) ∗H54% (23/50) ∗H60% (20/50)
NistDML181 68% (25/78) ∗H50% (39/78) ∗H55% (35/78) ∗H53% (37/78) 65% (28/78) ∗H45% (43/78) ∗H54% (36/78) ∗H56% (34/78)
NistDML182 73% (102/384) ∗H56% (168/384) ∗H61% (151/384) ∗H61% (150/384) 74% (98/384) ∗H53% (180/384) ∗H61% (149/384) ∗H63% (144/384)
NistDML183 65% (24/68) ∗H46% (37/68) ∗H46% (37/68) ∗H53% (32/68) 62% (26/68) ∗H41% (40/68) ∗H50% (34/68) ∗H51% (33/68)
NistWeather 61% (47/120) ∗H45% (66/120) ∗H52% (58/120) ∗H49% (61/120) 63% (44/120) ∗H45% (66/120) ∗H51% (58/120) ∗H52% (58/120)
NistXTS748 48% (12/23) ∗H28% (16/23) ∗H35% (15/23) ∗H39% (14/23) 52% (11/23) ∗H37% (14/23) ∗H48% (12/23) ∗H48% (12/23)
NistXTS749 53% (34/73) ∗H45% (40/73) ∗H47% (39/73) 53% (34/73) 58% (30/73) ∗H41% (43/73) ∗H49% (37/73) ∗H49% (37/73)
Person 53% (14/30) ∗H37% (19/30) ∗H50% (15/30) ∗H50% (15/30) 47% (16/30) ∗H37% (19/30) ∗H37% (19/30) ∗H43% (17/30)
Products 65% (50/144) ∗H47% (76/144) ∗H53% (68/144) ∗H56% (63/144) 62% (54/144) ∗H46% (78/144) ∗H51% (70/144) ∗H53% (68/144)
RiskIt 50% (342/687) ∗H44% (384/687) ∗H47% (366/687) ∗N51% (336/687) 54% (318/687) ∗H46% (373/687) ∗H50% (346/687) ∗H53% (322/687)
StackOverflow 64% (93/257) ∗H46% (139/257) ∗H48% (134/257) ∗H50% (129/257) 66% (88/257) ∗H51% (126/257) ∗H57% (111/257) ∗H57% (110/257)
StudentResidence 56% (32/72) ∗H39% (44/72) ∗H42% (42/72) ∗H46% (39/72) 60% (29/72) ∗H42% (42/72) ∗H49% (37/72) ∗H49% (37/72)
UnixUsage 58% (252/595) ∗H45% (328/595) ∗H47% (313/595) ∗H51% (293/595) 70% (178/595) ∗H47% (318/595) ∗H52% (287/595) ∗H54% (274/595)
Usda 59% (157/381) ∗H40% (227/381) ∗H42% (220/381) ∗H46% (206/381) 59% (157/381) ∗H44% (212/381) ∗H50% (190/381) ∗H52% (181/381)
WordNet 50% (96/192) ∗H40% (116/192) ∗H47% (102/192) ∗H49% (98/192) 49% (97/192) ∗H39% (117/192) ∗H45% (106/192) ∗H49% (98/192)

Minimum 38% 26% 34% 37% 42% 32% 36% 35%
Average 57% 42% 46% 49% 59% 43% 49% 51%
Maximum 73% 57% 66% 66% 74% 55% 63% 64%

TABLE IV
MEDIAN MUTATION SCORES EXPRESSED AS PERCENTAGES

Scores are expressed as a higher-is-better percentage of mutants killed by the test suites
concerned. In this table, “OTS” refers to the original, unreduced test suites, while the
other scores were obtained by test suites reduced by each of the respective techniques.

The “H” symbol means that the statistical significance test reveals that a technique’s
test suite obtained a significantly lower mutation score compared to the OTS, while “N”
indicates the technique obtained a significantly higher mutation score. The “∗” symbol
denotes a large effect size when comparing the tests from the technique with the OTS.

AVM-D DOMINO

Schemas OTS STICCER Random Greedy HGS OTS STICCER Random Greedy HGS

BrowserCookies 86.5 H86.5 86.5 H86.5 H86.5 96.6 96.6 96.6 96.6 96.6
FrenchTowns 83.3 ∗H80.3 ∗H80.3 ∗H80.3 ∗H81.8 95.5 95.5 95.5 95.5 95.5
iTrust 83.6 ∗H83.6 ∗H83.6 ∗H83.6 ∗H83.6 99.2 99.2 99.2 99.2 99.1
NistWeather 93.8 ∗H90.6 93.8 ∗H90.6 93.8 100.0 100.0 100.0 100.0 100.0
NistXTS749 92.0 92.0 H92.0 92.0 ∗H88.0 94.0 94.0 94.0 94.0 94.0
RiskIt 89.3 89.3 H89.3 89.3 ∗H88.8 99.5 99.5 99.5 99.5 99.5
UnixUsage 98.2 98.2 98.2 98.2 ∗H97.3 100.0 100.0 100.0 100.0 100.0
WordNet 87.4 ∗H86.3 H87.4 ∗H86.3 ∗H86.3 99.0 99.0 99.0 99.0 99.0

than the other techniques for the iTrust schema. STICCER
was generally, but not always, faster than the other reduction
techniques for tests generated by AVM-D. Since the reduction
techniques were less successful at reducing AVM-D-generated
test suites, there is less to differentiate their performance.
In conclusion for RQ3, the results show that, in general, test
suites reduced by STICCER are fast to run compared to the
OTS and those reduced by other techniques. For the largest
schema, STICCER-reduced test suites were up to five times
faster to run mutation analysis with, as compared to the OTS.

VI. RELATED WORK

Many researchers have studied test suite reduction with
the motivation of reducing the regression testing or human
oracle costs (e.g., [13], [29]–[31], [38], [39]). Yoo and Har-
man [31] surveyed prior work on ways to reduce suites by

selecting a representative subset of test cases. These included
Greedy [40], HGS [13], Greedy Essential (GE), and Greedy
Redundant Essential (GRE) [41]. The GE algorithm first
selects the essential, or “irreplaceable” tests, next applying
the standard greedy algorithm. Conversely, GRE removes any
redundant tests that the essential tests already covered and
then applies the greedy algorithm. Since experimental studies
showed that HGS and Greedy significantly reduced the size
of test suites [42], others have used these methods as building
blocks for new reducers (e.g., [43]–[45]). For instance, some
applied integer linear programming (e.g., [46]) or evolutionary
algorithms (e.g., [47]) to test suite reduction. Finally, Yoo and
Harman used multi-objective search with test reduction, test
coverage, and past fault-detection history as goals [48].

While some work found that reduced test suites negatively
influence fault detection [15], [49], others found that fault
detection effectiveness was more or less maintained [50], [51].
It is worth noting that all of these reduction techniques were
focused on reducing test suites for traditional programs rather
than database schema testing, as presented in this paper.

In the context of database testing, there are several studies of
database schema evolution (e.g., [8]–[10]), thereby motivating
the need for efficient regression testing methods. Kapfhammer
reduced test suites for database application tests using a greedy
algorithm [52]. Similarly, Tuya et al. used a greedy algorithm
to reduce the amount of data within databases for testing
SQL SELECT queries [53], [54]. Haftmann et al. used a slicing
technique to prioritize tests and reduce the number of database
resets to improve the efficiency of regression testing [55].

TABLE V
MEDIAN MUTATION ANALYSIS TIMES FOR STICCER-GENERATED

TESTS VERSUS THE ORIGINAL TEST SUITE

Times for STICCER are broken down into “RT” (i.e., time to reduce test suites), and
“MT” (i.e., time for mutation analysis with STICCER), with the total compared to the
original test suite (OTS) for a fair comparison. The “N” symbol means that STICCER
required a statistically significantly longer time to run than the OTS, while “H” denotes
the opposite. The “∗” symbol indicates a large effect size when comparing the two.

AVM-D DOMINO

OTS STICCER OTS STICCER

Schemas Total RT MT Total Total RT MT Total

ArtistSimilarity 0.09 0.12 0.05 ∗N0.17 0.10 0.13 0.05 ∗N0.18
ArtistTerm 0.54 0.14 0.22 ∗H0.37 0.54 0.14 0.22 ∗H0.36
BankAccount 0.45 0.17 0.19 ∗H0.36 0.46 0.16 0.19 ∗H0.34
BookTown 36.19 0.94 16.17 ∗H17.11 36.50 1.07 10.85 ∗H11.92
BrowserCookies 2.21 0.37 0.94 ∗H1.31 2.34 0.37 0.73 ∗H1.09
Cloc 0.27 0.15 0.07 ∗H0.22 0.28 0.15 0.09 ∗H0.25
CoffeeOrders 2.96 0.31 1.20 ∗H1.51 2.98 0.29 1.05 ∗H1.34
CustomerOrder 9.74 0.80 6.68 ∗H7.47 9.78 0.84 4.56 ∗H5.40
DellStore 8.04 1.42 1.93 ∗H3.35 8.40 1.46 3.22 ∗H4.68
Employee 0.34 0.20 0.13 H0.32 0.36 0.18 0.12 ∗H0.30
Examination 4.42 1.06 1.39 ∗H2.45 4.48 1.11 1.00 ∗H2.12
Flights 1.60 0.30 0.61 ∗H0.91 1.68 0.41 0.68 ∗H1.09
FrenchTowns 2.43 0.23 1.46 ∗H1.69 2.44 0.23 1.23 ∗H1.46
Inventory 0.10 0.12 0.05 ∗N0.17 0.10 0.12 0.04 ∗N0.17
IsoFlav R2 9.80 0.70 2.83 ∗H3.52 10.20 0.75 2.72 ∗H3.47
Iso3166 0.04 0.11 0.02 ∗N0.13 0.05 0.11 0.03 ∗N0.13
iTrust 2297.86 150.17 959.31 ∗H1109.48 2330.02 157.23 428.57 ∗H585.80
JWhoisServer 8.91 1.64 5.62 ∗H7.25 9.34 1.86 3.88 ∗H5.74
MozillaExtensions 25.52 2.02 6.62 ∗H8.64 26.61 2.38 5.39 ∗H7.78
MozillaPermissions 0.23 0.15 0.08 0.23 0.24 0.15 0.07 ∗H0.22
NistDML181 0.36 0.15 0.11 ∗H0.26 0.38 0.15 0.12 ∗H0.28
NistDML182 14.60 1.93 2.22 ∗H4.15 14.99 2.00 2.43 ∗H4.43
NistDML183 0.28 0.14 0.09 ∗H0.23 0.29 0.14 0.10 ∗H0.25
NistWeather 0.74 0.22 0.29 ∗H0.51 0.76 0.23 0.25 ∗H0.48
NistXTS748 0.08 0.12 0.04 ∗N0.16 0.08 0.11 0.04 ∗N0.15
NistXTS749 0.39 0.17 0.20 H0.37 0.40 0.17 0.16 ∗H0.33
Person 0.16 0.10 0.09 ∗N0.19 0.16 0.15 0.07 ∗N0.22
Products 1.04 0.14 0.42 ∗H0.57 1.06 0.18 0.44 ∗H0.62
RiskIt 44.40 1.41 23.15 ∗H24.57 45.91 1.59 18.90 ∗H20.49
StackOverflow 5.58 0.93 0.97 ∗H1.90 5.76 1.16 1.42 ∗H2.58
StudentResidence 0.43 0.16 0.20 ∗H0.36 0.44 0.14 0.17 ∗H0.32
UnixUsage 12.25 0.92 6.21 ∗H7.13 12.34 0.95 3.83 ∗H4.79
Usda 15.55 1.39 2.78 ∗H4.17 16.44 1.52 4.15 ∗H5.68
WordNet 3.89 0.37 1.86 ∗H2.23 3.93 0.38 1.69 ∗H2.07

However, unlike these examples of prior work, this paper
focuses on database schema testing and the reduction of test
suites using greedy techniques and the merging of test cases.

VII. CONCLUSIONS AND FUTURE WORK

Since many real-world database applications contain com-
plex and rapidly evolving database schemas [8]–[10], there
is the need for an efficient way to regression test these
systems. While the automatically generated test suites created
by tools like SchemaAnalyst [24] mitigate the challenges
associated with manually testing a database schema’s integrity
constraints, the numerous, often interwoven, generated tests
make repeated testing and test adequacy assessment time con-
suming. This paper presents a test suite reduction technique,
called Schema Test Integrity Constraints Combination for
Efficient Reduction (STICCER), that systematically discards
and merges redundant tests, creating a reduced test suite that
is guaranteed to have the same coverage as the original one.
STICCER advances the state-of-the-art in test suite reduction
because, unlike traditional approaches such as Greedy and
HGS, it identifies and reduces both the overlap in test require-
ment coverage and the database state created by the tests.

Using 34 relational database schemas and test data created
by two test generation methods, this paper experimentally
compared STICCER to Greedy, HGS, and a Random method.
These results show that STICCER significantly outperforms
the other techniques at decreasing test suite size, while also
lessening the overall number of database interactions (i.e.,
the SQL INSERT statements) performed by the tests. The

TABLE VI
MEDIAN MUTATION ANALYSIS TIMES FOR STICCER-GENERATED

TESTS VERSUS THE OTHER REDUCTION TECHNIQUES

The “H” symbol means that the statistical significance test reveals that the technique’s
reduced tests required a significantly longer time than those generated STICCER, while
“N” indicates a technique’s tests needed a significantly shorter time than STICCER’s. The
“∗” symbol means the effect size was large when comparing the technique to STICCER.

AVM-D DOMINO

Schemas STICCER Random Greedy HGS STICCER Random Greedy HGS

ArtistSimilarity 0.05 ∗H0.07 ∗H0.07 ∗H0.06 0.05 ∗H0.07 ∗H0.07 ∗H0.07
ArtistTerm 0.22 ∗H0.38 ∗H0.38 ∗H0.33 0.22 ∗H0.39 ∗H0.37 ∗H0.37
BankAccount 0.19 ∗H0.32 ∗H0.31 ∗H0.28 0.19 ∗H0.29 ∗H0.28 ∗H0.25
BookTown 16.17 ∗H22.89 ∗H22.05 ∗H19.10 10.85 ∗H22.37 ∗H20.75 ∗H19.11
BrowserCookies 0.94 ∗H1.12 ∗H1.02 ∗H0.98 0.73 ∗H1.27 ∗H1.12 ∗H1.04
Cloc 0.07 ∗H0.17 ∗H0.16 ∗H0.15 0.09 ∗H0.18 ∗H0.17 ∗H0.15
CoffeeOrders 1.20 ∗H1.86 ∗H1.88 ∗H1.68 1.05 ∗H1.81 ∗H1.81 ∗H1.57
CustomerOrder 6.68 ∗N6.47 ∗H7.13 ∗N5.88 4.56 ∗H6.32 ∗H7.02 ∗H5.68
DellStore 1.93 ∗H5.27 ∗H5.15 ∗H4.68 3.22 ∗H5.02 ∗H4.71 ∗H4.53
Employee 0.13 ∗H0.21 ∗H0.20 ∗H0.21 0.12 ∗H0.19 ∗H0.16 ∗H0.16
Examination 1.39 ∗H2.34 ∗H2.32 ∗H2.16 1.00 ∗H2.08 ∗H1.80 ∗H1.69
Flights 0.61 ∗H0.85 ∗H0.72 ∗H0.71 0.68 ∗H0.95 ∗H0.87 ∗H0.84
FrenchTowns 1.46 ∗H1.59 ∗H1.52 ∗H1.55 1.23 ∗H1.63 ∗H1.62 ∗H1.54
Inventory 0.05 ∗H0.07 ∗H0.07 ∗H0.06 0.04 ∗H0.07 ∗H0.06 ∗H0.06
IsoFlav R2 2.83 ∗H5.51 ∗H5.24 ∗H5.01 2.72 ∗H5.04 ∗H4.33 ∗H4.04
Iso3166 0.02 ∗H0.03 ∗H0.03 ∗H0.03 0.03 ∗H0.03 ∗H0.03 ∗H0.03
iTrust 959.31 ∗H1367.85 ∗H1251.95 ∗H1223.85 428.57 ∗H1273.12 ∗H1155.09 ∗H1117.88
JWhoisServer 5.62 ∗H5.88 ∗H5.73 ∗N5.48 3.88 ∗H5.81 ∗H5.56 ∗H5.29
MozillaExtensions 6.62 ∗H12.35 ∗H10.22 ∗H12.74 5.39 ∗H11.75 ∗H9.89 ∗H9.81
MozillaPermissions 0.08 ∗H0.16 ∗H0.15 ∗H0.15 0.07 ∗H0.14 ∗H0.13 ∗H0.12
NistDML181 0.11 ∗H0.20 ∗H0.19 ∗H0.18 0.12 ∗H0.22 ∗H0.18 ∗H0.18
NistDML182 2.22 ∗H7.14 ∗H6.50 ∗H6.31 2.43 ∗H7.54 ∗H6.24 ∗H5.85
NistDML183 0.09 ∗H0.17 ∗H0.17 ∗H0.17 0.10 ∗H0.18 ∗H0.16 ∗H0.17
NistWeather 0.29 ∗H0.45 ∗H0.41 ∗H0.41 0.25 ∗H0.46 ∗H0.42 ∗H0.41
NistXTS748 0.04 ∗H0.06 ∗H0.05 ∗H0.05 0.04 ∗H0.05 ∗H0.05 ∗H0.05
NistXTS749 0.20 ∗H0.24 ∗H0.24 0.21 0.16 ∗H0.25 ∗H0.22 ∗H0.22
Person 0.09 ∗H0.12 H0.10 ∗H0.10 0.07 ∗H0.11 ∗H0.11 ∗H0.10
Products 0.42 ∗H0.64 ∗H0.61 ∗H0.55 0.44 ∗H0.68 ∗H0.63 ∗H0.59
RiskIt 23.15 ∗H25.53 ∗H25.79 ∗N22.77 18.90 ∗H26.43 ∗H24.60 ∗H21.52
StackOverflow 0.97 ∗H3.15 ∗H3.00 ∗H2.97 1.42 ∗H2.73 ∗H2.53 ∗H2.48
StudentResidence 0.20 ∗H0.28 ∗H0.27 ∗H0.26 0.17 ∗H0.28 ∗H0.25 ∗H0.25
UnixUsage 6.21 ∗H6.97 ∗H7.52 ∗H6.30 3.83 ∗H7.57 ∗H6.96 ∗H5.91
Usda 2.78 ∗H8.89 ∗H8.60 ∗H9.34 4.15 ∗H9.72 ∗H7.50 ∗H7.33
WordNet 1.86 ∗H2.45 ∗H2.21 ∗H2.07 1.69 ∗H2.44 ∗H2.28 ∗H2.09

results further reveal that the reduced test suites produced by
STICCER are up to 5X faster than the original test suite and
2.5X faster than reduced suites created by Greedy, HGS, and
Random, often leading to significant decreases in mutation
analysis time. STICCER’s tests always preserve the coverage
of the test suite and rarely lead to a drop in the mutation score,
with a maximum decrease in fault detection of 3.2%.

Given these promising results, as part of future work we
will enhance STICCER so that it operates in a multi-objective
fashion, explicitly balancing testing goals like decreasing the
test suite size while maximizing its mutation score. We will
also directly integrate STICCER into the test generation loop,
allowing the reduction method to work in tandem with the
test data generators. After finishing these improvements to the
presented technique, we will conduct more experiments with
new relational database schemas. Since STICCER has proven
effective at reducing database schema test suites, we will also
investigate ways in which we can adapt the presented approach
to the reduction of the test suites for traditional programs that
manipulate complex state in other formats. Our goal is to
develop an automated method that quickly generates focused
and effective tests for a wide variety of data-driven programs,
like those that use relational databases or NoSQL data stores.

REFERENCES

[1] S. Guz, “Basic mistakes in database testing,” https://dzone.com/articles/
basic-mistakes-database, 2011.

[2] S. Ambler and P. J. Sadalage, Refactoring Databases: Evolutionary
Database Design, 2006.

[3] S. Ambler, “Database testing: How to regression test a relational
database,” http://www.agiledata.org/essays/databaseTesting.html.

[4] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts, 6th ed., 2010.

[5] P. McMinn, C. J. Wright, and G. M. Kapfhammer, “The effective-
ness of test coverage criteria for relational database schema integrity
constraints,” Transactions on Software Engineering and Methodology,
vol. 25, no. 1, 2015.

[6] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based
testing of relational schema integrity constraints across multiple database
management systems,” in Proceedings of the International Conference
on Software Testing, Verification and Validation, 2013.

[7] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “DOMINO: Fast
and effective test data generation for relational database schemas,”
in Proceedings of the International Conference on Software Testing,
Verification and Validation, 2018.

[8] C. A. Curino, L. Tanca, H. J. Moon, and C. Zaniolo, “Schema evolu-
tion in Wikipedia: Toward a web information system benchmark,” in
International Conference on Enterprise Information Systems, 2008.

[9] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution
of schema and code in database applications,” in Proceedings of the
International Symposium on the Foundations of Software Engineering,
2013.

[10] S. Ambler, “Adopting evolutionary/agile database techniques,” http:
//www.agiledata.org/essays/adopting.html.

[11] G. M. Kapfhammer, “A comprehensive framework for testing database-
centric applications,” Ph.D. dissertation, University of Pittsburgh, 2007.

[12] C. J. Wright, G. M. Kapfhammer, and P. McMinn, “Efficient mutation
analysis of relational database structure using mutant schemata and par-
allelisation,” in Proceedings of the International Workshop on Mutation
Analysis, 2013.

[13] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for control-
ling the size of a test suite,” Transactions on Software Engineering and
Methodology, vol. 2, no. 3, 1993.

[14] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size
of coverage-based test sets,” in Proceeding of the 12th International
Conference on Testing Computer Software, 1995.

[15] G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Software Testing, Verification and Reli-
ability, vol. 12, no. 4, 2002.

[16] “The SQLite DBMS,” http://www.sqlite.org/.
[17] “The PostgreSQL DBMS,” http://www.postgresql.org/.
[18] “SQL as understood by SQLite,” https://sqlite.org/lang createtable.html.
[19] “Why does a UNIQUE constraint allow only one NULL?”

https://dba.stackexchange.com/questions/80514/
why-does-a-unique-constraint-allow-only-one-null.

[20] “Database Migration: What It Is and How to Do It,”
https://rollout.io/blog/database-migration/.

[21] “Which database should I use in production?”
https://djangodeployment.com/2016/12/23/which-database-should-i-
use-on-production/.

[22] “Top 10 sites built with Django framework,” http://ddi-
dev.com/blog/programming/top-sites-built-django-framework/.

[23] P. Ammann and J. Offutt, Introduction to Software Testing, 2016.
[24] P. McMinn, C. J. Wright, C. Kinneer, C. J. McCurdy, M. Camara, and

G. M. Kapfhammer, “SchemaAnalyst: Search-based test data generation
for relational database schemas,” in Proceedings of the International
Conference on Software Maintenance and Evolution, 2016.

[25] B. Korel, “Automated software test data generation,” Transactions on
Software Engineering, vol. 16, no. 8, 1990.

[26] J. Kempka, P. McMinn, and D. Sudholt, “A theoretical runtime and em-
pirical analysis of different alternating variable searches for search-based
testing,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2013.

[27] P. McMinn and G. M. Kapfhammer, “AVMf: An open-source framework
and implementation of the alternating variable method,” in Proceedings
of the International Symposium on Search-Based Software Engineering,
2016.

[28] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated
framework for structural test-data generation,” in Proceedings of the
International Conference on Automated Software Engineering, 1998.

[29] S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm
for test suite minimization,” in Proceedings of the 6th Workshop on
Program Analysis for Software Tools and Engineering, 2005.

[30] G. M. Kapfhammer, “Regression testing,” in The Encyclopedia of
Software Engineering, 2010.

[31] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, 2012.

[32] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting
state-polluting tests to prevent test dependency,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2015.

[33] C. J. Wright, G. M. Kapfhammer, and P. McMinn, “The impact of
equivalent, redundant and quasi mutants on database schema mutation
analysis,” in Proceedings of the International Conference on Quality
Software, 2014.

[34] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Journal
of Education and Behavioral Statistics, vol. 25, no. 2, 2000.

[35] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Journal of
Software Testing, Verification and Reliability, vol. 24, no. 3, 2014.

[36] P. McMinn, G. M. Kapfhammer, and C. J. Wright, “Virtual mutation
analysis of relational database schemas,” in Proceedings of the Interna-
tional Workshop on Automation of Software Test, 2016.

[37] P. McMinn, C. Wright, C. McCurdy, and G. M. Kapfhammer, “Auto-
matic detection and removal of ineffective mutants for the mutation
analysis of relational database schemas,” Transactions on Software
Engineering, 2019.

[38] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of
a test suite,” Information Processing Letters, vol. 60, no. 3, 1996.

[39] A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test mini-
mization,” in Proceedings of the International Conference on Software
Engineering, 2018.

[40] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of Operations Research, vol. 4, no. 3, 1979.

[41] T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 5-6, 1998.

[42] H. Zhong, L. Zhang, and H. Mei, “An experimental comparison of four
test suite reduction techniques,” in Proceedings of the 28th International
Conference on Software Engineering, 2006.

[43] D. Jeffrey and N. Gupta, “Improving fault detection capability by
selectively retaining test cases during test suite reduction,” Transactions
on Software Engineering, vol. 33, no. 2, 2007.

[44] C.-T. Lin, K.-W. Tang, and G. M. Kapfhammer, “Test suite reduction
methods that decrease regression testing costs by identifying irreplace-
able tests,” Information and Software Technology, vol. 56, no. 10, 2014.

[45] C.-T. Lin, K.-W. Tang, J.-S. Wang, and G. M. Kapfhammer, “Empirically
evaluating greedy-based test suite reduction methods at different levels
of test suite complexity,” Science of Computer Programming, vol. 150,
2017.

[46] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for all-
uses test suite reduction,” in Proceeding of the International Conference
on Software Engineering, 2004.

[47] N. Mansour and K. El-Fakih, “Simulated annealing and genetic algo-
rithms for optimal regression testing,” Journal of Software Maintenance:
Research and Practice, vol. 11, no. 1, 1999.

[48] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient
multi-objective test suite minimisation,” Journal of Systems and Soft-
ware, vol. 83, no. 4, 2010.

[49] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities of
test suites,” in Proceedings of the International Conference on Software
Maintenance, 1998.

[50] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini, “Test set size
minimization and fault detection effectiveness: A case study in a space
application,” Journal of Systems and Software, vol. 48, no. 2, 1999.

[51] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set minimization on fault detection effectiveness,” Software: Practice
and Experience, vol. 28, no. 4, 1998.

[52] G. Kapfhammer, “Towards a method for reducing the test suites of
database applications,” in Proceedings of the International Conference
on Software Testing, Verification and Validation, 2012.

[53] J. Tuya, C. de la Riva, M. J. Suarez-Cabal, and R. Blanco, “Coverage-
aware test database reduction,” Transactions on Software Engineering,
vol. 42, no. 10, 2016.

[54] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Query-aware shrinking
test databases,” in Proceedings of the International Workshop on Testing
Database Systems, 2009.

[55] F. Haftmann, D. Kossmann, and E. Lo, “A framework for efficient
regression tests on database applications,” The VLDB Journal, vol. 16,
no. 1, 2007.

