Running Experiments and Performing Data Analysis
Using SchemaAnalyst and DOMINO

Abdullah Alsharif
University of Sheffield

I. INTRODUCTION

SchemaAnalyst is a tool, developed in the Java programming
language, that automatically generates tests for complex, real-
world relational database schemas. It features several data
generators including DOMINO (DOMain-specific approach to
INtegrity constraint test data generation), Alternating Variable
Method (AVM), and Random™ [1], [2], [4]. SchemaAna-
lyst generates tests that support three database management
systems (DBMSs): PostgreSQL, SQLite, and HyperSQL. It
also provides a mutation testing tool to mutate (i.e., remove,
add, or flip) the integrity constraints in the schema under test.

It is important to test a relational database schema because
small mistakes, such as omitting the definition of a schema’s in-
tegrity constraint (i.e., a PRIMARY KEY Of UNIQUE) can cCOmpro-
mise application correctness and increase maintenance costs.
For example, forgetting to mark each username as UNIQUE will
lead to the duplication of user names within a relational
database. To counter this issue, SchemaAnalyst generates, for
a specific schema, a test suite that systematically satisfies in-
tegrity constraint coverage criteria [2], requiring each generated
test case to exercise the relational schema’s integrity constraints
as true or false (i.e., accepted or rejected by the DBMS).

This paper explains how to run test generation experiments
and data analysis with SchemaAnalyst and its data analysis
package written in the R language for statistical computation.
It will help others to use SchemaAnalyst, replicate prior exper-
iments (e.g., [4]), and conduct new studies of schema testing.

II. RUNNING EXPERIMENTS WITH SchemaAnalyst

Since it is implemented in the Java language, SchemaAnalyst
is cross platform. It uses the Gradle tool to manage its building,
testing, and dependencies. Testers can follow the instructions at
the tool’s GitHub repository' and a previous tool paper [3] to
learn how to install and run SchemaAnalyst. As these resources
do not show how to experimentally evaluate SchemaAnalyst,
this paper explains how to run experiments using a provided
Python script called runExperiments.py. Because SchemaAn-
alyst’s search-based test generation methods are stochastic,
testers can parameterize this script with the number of trials
and a random seed in addition to giving the name of a test
data generator, DBMS, and the schema under test. These are
the steps for configuring and running the experiments:

1) Install SchemaAnalyst and one or more DBMSs.

2) Edit the config/database.properties file so that it

provides the access details for each of the DBMSs.

3) Run the Gradle compile command, ./gradlew compile,

to install all of SchemaAnalyst’s dependencies.

4) Set the crasspaTH to point to the tool’s build directory.

Thttps://github.com/schemaanalyst/schemaanalyst

Gregory M. Kapfthammer
Allegheny College

Phil McMinn
University of Sheffield

5) Modify scripts/runExperiments.py to configure the

experiment (e.g., specify the number of trials).

An experimenter now runs the Python script, performing
mutation analysis on tests generated by SchemaAnalyst, thereby
generating the results files. Located in the results/ direc-
tory, these files include: (1) mutationanalysis.dat with basic
test generation and mutation information for each run; (2)
mutanttiming.dat with details for each schema mutant both
killed and alive; (3) alive_mutant/ a directory with files and
directories furnishing details about each run of data generation
and mutation analysis, with notes about every live mutant.

ITI. ANALYZING DATA FROM STUDIES OF SchemaAnalyst

We created an R package? to replicate our paper’s data and
tables [4]. Researchers can use devtools [5] to download and
install the replication package and then take these steps:

1) Load the empirical results from prior experiments with:

mutants <- dominoR::read_analysis ()
analysis <- dominoR::read_mutants ()

2) To re-generate the tables in our main paper [4], a
researcher can run the R package’s functions (e.g.,
dominoR: :tablefgeneratoricoverage), following the
provided instructions for details about inputs and outputs.

3) While the default format of the result tables is like that
of our main paper, researchers can modify the replication
package’s code to customize table output as needed.

4) To support the generation of tables with different entries,
the results analysis functions can be parameterized to, for
instance, compute either mean or median values.

To conclude, this paper explained both how to easily run
experiments with SchemaAnalyst and to perform data analysis
with an R package. This supports the reproduction of prior
experimental results and guides future researchers who want
to conduct their own analyses of schema testing methods. We
invite practitioners and researchers to use the test generators
and mutation analysis methods provided by SchemaAnalyst.

REFERENCES

[11 G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based testing
of relational schema integrity constraints across multiple database man-
agement systems,” in Proc. of ICST, 2013.

[2] P. McMinn, C. J. Wright, and G. M. Kapthammer, “The effectiveness of
test coverage criteria for relational database schema integrity constraints,”
TOSEM, vol. 25, no. 1, 2015.

[3] P. McMinn, C. J. Wright, C. Kinneer, C. J. McCurdy, M. Camara, and
G. M. Kapthammer, “SchemaAnalyst: Search-based test data generation
for relational database schemas,” in Proc. of ICMSE, 2016.

[4] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “DOMINO: Fast and
effective test data generation for relational database schemas,” in Proc. of
ICST, 2018.

[S] “Devtools” https://github.com/hadley/devtools.

Zhttps://github.com/schemaanalyst/domino-replicate



