
Generating Database Schema Test Suites with DOMINO

Abdullah Alsharif
University of Sheffield

Gregory M. Kapfhammer
Allegheny College

Phil McMinn
University of Sheffield

I. INTRODUCTION

Industrial practitioners advocate the testing of relational
database schemas because, for instance, omitting the definition
of an integrity constraint (i.e., a PRIMARY KEY or a UNIQUE) in
a schema can compromise correctness and increase maintenance
costs. For example, forgetting to mark each username as UNIQUE

could lead to incorrect data duplication within a database. Also,
different database management systems (DBMSs) often interpret
integrity constraints differently (e.g., a PRIMARY KEY can accept a
NULL value once with SQLite but not with other DBMSs) [1].

Systematic schema testing uses integrity constraint coverage
criteria [2] that require the creation of an INSERT statement to
exercise each integrity constraints as true or false (i.e., accepted
or rejected by the DBMS). Automatically generating test data has
been implemented using Random+ and the Alternating Variable
Method (AVM) [2]. However, these techniques for generating
test data may be suboptimal, thus requiring improvements to
ensure that the generated tests are good at finding faults [3].
In this paper and the accompanying demonstration we introduce
the use and benefits of DOMINO (DOMain-specific approach to
INtegrity cOnstraint test data generation), a new technique that
automatically generates a test suite for a database schema.

II. USING DOMINO FOR AUTOMATED TEST GENERATION

DOMINO uses domain-specific operators to, in comparison to
Random+ and two variants of the AVM, rapidly generate test
data for schemas [2]. To achieve this performance improvement
without compromising the effectiveness of the generated tests, it
replicates values generated for an INSERT statement (i.e., copying
PRIMARY KEY values to the related FOREIGN KEY), flipping values
to NULL, and randomizing data where needed. It is integrated into
the well-documented and easy-to-use SchemaAnalyst tool.

For example, if a test case requires the exercising of a PRIMARY

KEY, DOMINO will first generate multiple INSERTs to prepare the
database. To violate the PRIMARY KEY, it will replicate an existing
PRIMARY KEY to ensure rejection or it will randomize a new value
for the PRIMARY KEY to guarantee uniqueness and acceptance.
Therefore, the benefits of using DOMINO for test generation are:

1) It generates random data rather than using default values,
which is better for finding relational schema faults [3].

2) Test suite generation with DOMINO is faster than both of the
state-of-the-art approaches based on the AVM. For example,
DOMINO is approximately 40 seconds faster than AVM-
Random and 10 seconds faster than AVM-Defaults [3].

3) DOMINO’s test coverage scores are either equal to or higher
than those of tests created by either AVM variant [3].

To use DOMINO, a tester should specify “dominoRandom” as
the requested test data generator when running either a mutation
analysis or test data generation technique provided by Schema-
Analyst. To install and use SchemaAnalyst, individuals can follow
the detailed documentation at the tool’s GitHub repository1.

1https://github.com/schemaanalyst/schemaanalyst

●

60

80

100

AVM−R DOMINO
Test Data Generators

Te
st

 G
en

er
at

io
n 

T
im

e 
(S

ec
on

ds
)

Fig. 1. Test data generation time for the iTrust schema.

99.4

99.5

99.6

99.7

99.8

AVM−R DOMINO
Test Data Generators

M
ut

at
io

n 
S

co
re

 (
%

)

Fig. 2. Mutation score of generated tests for the iTrust schema.

III. HIGHLIGHTS OF PRIOR EXPERIMENTAL RESULTS

This section focuses on the illustrative empirical results for
the iTrust relational schema because it is one of the largest
and most complex schemas to which we have applied DOMINO.
Figure 1 shows that DOMINO is much faster at generating tests
than AVM-R—an AVM that uses random data generation rather
than default values—taking nearly half the time. Note that, since
both data generators are stochastic, this graph presents results
from 30 trials when the PostgreSQL DBMS hosts the schema.

Figure 2 shows the capability of DOMINO at finding synthetic
schema faults called mutants, with the same schema and DBMS
as in Figure 1. The results show that DOMINO kills more
mutants than AVM-R, indicating it is better than this previously
implemented method—in this case and also in others. Due to
space constraints, refer to our full paper for more results [3].

In conclusion, this paper introduced DOMINO, showing that
it is superior to prior methods. It also recommended the use
of domain-specific operators that can be beneficial compared to
search-based techniques. Overall, this demonstration will help
researchers and practitioners learn how to use SchemaAnalyst and
observe the benefits of using DOMINO to generate schema tests.

REFERENCES

[1] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based testing of
relational schema integrity constraints across multiple database management
systems,” in Proc. of ICST, 2013.

[2] P. McMinn, C. J. Wright, and G. M. Kapfhammer, “The effectiveness of
test coverage criteria for relational database schema integrity constraints,”
TOSEM, vol. 25, no. 1, 2015.

[3] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “DOMINO: Fast and
effective test data generation for relational database schemas,” in Proc. of
ICST, 2018.


